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A SHORT INTRODUCTION TO LUMINOSITY FUNCTIONS OF GALAXIES

JOHN M. DICKEY '
University of Minnesota, Department of Astronomy,
116 Church Street, SE, Minneapolis, MN 55455

This brief review is intended to provide students with an
introduction to the concepts and terminology associated with
galaxy luminosity functions, particularly as used in the
discussion of clusters of galaxies. Several of the lecturers

refer in passing to L*, the RORF, and other simple concepts
which may be unfamiliar to beginning graduate students. The
purpose of this lecture is to clarify the idea of a luminosity
function, and describe some commonly used forms for the
optical, radio, and infra-red luminosity functions of
galaxies.

1) Definition and Uses of the Luminosity Function

The luminosity function is a distribution function,
specifically the distribution of luminosities of objects in a
sample. Luminosity itself is difficult to measure, since the
total or bolometric luminosity requires both accurate distance
measurements and integration of each object’s spectrum over
all frequencies. Generally we measure specific luminosity,
Lu’ over a given band, or range of frequency, so the units of

Ly are erg sec_1 Hz_l. Then the luminosity function is n(LU),
where n(LV) dLu is the number of galaxies w%gh luminosfiy-in
the range Lu to LV+dLy; n(LV) has units Mpc (watt Hz ) ~.
The integral of n(Ly)dLV over all luminosities is just the
density of galaxies, n.

Note that if n(Ly) is described by a power law, for L to

be finite requires that the power law index be less than -1 at
high luminosities, and greater than -1 at low luminosities,
where L is the total luminosity of all galaxies in a unit
volume, i.e.,

®
L (watt Hz-1 Mpc-3) = J'LV n(Ly) dLy
o
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10 J. M. DICKEY

A simple combination of power laws is often a useful
approximate form to assume for a luminosity function, i.e.,

ny L1 (L < Lg) (o < 1)

1. n(L) =
n, L-%2 (L > Lg) (ap > 1)

What we know about luminosity functions generally comes
from the distribution of fluxes in a survey which is complete
in some way. The best is a volume-limited sample (meaning
every galaxy in the volume has been measured). This is rarely
available, since all surveys have some minimum detectable

flux, S , which translates into a cutoff distance ¥ =
min cut

jL/&wSmin which is a function of luminosity. So the sample

size is a function of luminosity. This bias can be corrected
if we know that the distribution of galaxies is homogeneous,
i.e., that the total density

®

n= |n(L)dL
0

is independent of position. In general n 1is a strong
function of position; it varies by several orders of magnitude
between rich clusters and voids; indeed, the study of this
function is the main subject of this course.

If the distribution of objects is homogeneous, so that
n 1is a constant independent of position, which presumably
olds when we average over very large scales, then we can
easily evaluate some simple integrals of the luminosity
function which apply to a flux limited sample. The number of
objects brighter than the minimum flux Smin is just given by

@
a
2. No(Smin) = | 4nr2dr [ n(L) dL
4712 Smin
0
@

Reut(L,Smin)
dL n(L) j4m2 dr
v 0

o
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LUMINOSITY FUNCTIONS 11

where we have simply interchanged the integration over volume
and over luminosity. (Note: the distance r, which on small
scales is simply cz/H , generalizes in a Friedman universe
with p =0, =1 to®

r=O [z-(\/1+z1]

1+2

see Condon (1984a). In the simplest case of "standard candles"
the luminosity function is

n(L) = n 3(L-Lg)

so that
3
N (Smin) = Smn [—2—]2
3 4 T Smin
In magnitude notation N>(Smin) o Séiﬁz becomeé N<(m) « m0'6.
The "differential source count" function, n(smin) =
—dN>(Smin)/dSmin depends on Smin to the minus 5/2 power, and

the total flux from all sources is proportional to f S n(S)ds
which diverges. This is a statement of Olber’'s paradox, which
can only be resolved in a Euclidian universe if the luminosity
function evolves, i.e., changes with time. The only tracers

for which we have complete flux limited samples reaching to

large redshifts (z > 1) are QSO's and radio sources, both of
which apparently have luminosity functions which evolve
strongly on cosmological time scales.

In a flux limited sample the contribution to n(s) of
sources of different luminosities is most easily seen in von
Hoerner's (1973) "visibility function":

5
3. o(L) = L2 n(L)
whose dimensions are watt3/2 Hz-3/2 pc-3, which is usually

converted to Jy3/2. A plot of log ¢(L) vs. log L immediately
shows what range of luminosities contribute most to a flux
limited sample, since

§_ @
4. nS) = 4xS 2 [ ¢(L) diogL
‘ CD

(see Condon l984a,b).
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12 ' J. M. DICKEY

A useful integral of the luminosity function gives the

median distance to objects in a flux limited sample, r1/2’
given by

rt

2 ©
® ®
5. anr2dr  |n(LydL = |4nr2dr  [n(L)dL
4nr2Sm|n 4nr28m|n
0 r

L
2
where again we can interchange integration to get

L1

0

3 3 L2
6. Jn(L) ( yrr )ZdL - Jn(L) ( yrr- )2 dL
L1

2
1/2 min'1/2° ‘
n(L) having the simple form of equation 1. For example, if n,

where L 4nS This can easily be evaluated for

= 0 and a; = 0 [i.e., a step function n(L)], we find simply

that rl/2 is 0.64 Lo/awsmin' Using ¢(L) equation 6 becomes

simply
X (40)
f¢(|-) diogL = [o(L) dlogL
A <

where x = log L which is the obvious median value of ¢(L)

1/2°
when plotted vs. log L.

OPTICAL LUMINOSITY FUNGCTIONS

If we have a sample with distance information for every

object, so that we know L(r,S) = 4ﬂr23 for each galaxy, we can
define a volume over which the sample is complete to any
arbitrarily low luminosity, and compute the density of
galaxies as a function of luminosity. This is the approach
taken by Schechter (1976), using a sample from the Reference
Catalog of Bright Galaxies (de Vaucouleurs and de Vaucouleurs
1967) which is magnitude limited at B® = 11.75. An -
alternative method to derive n(L) is to study rich clusters
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LUMINOSITY FUNCTIONS _ 13

which are distant enough that 1/r2 is roughly constant for all
members and rich enough that confusion due to foreground and
background galaxies in the field is not a major problem
(Oemler 1974). A compendium of various functional forms for
n(L) is given by Felten (1977). The form chosen by Press and
Schechter (1974) is very popular, not because it is simple,
but because it follows from a theoretical analysis of self-
similar gravitational condensation in the early universe.

This is a three parameter function of the form:

L
LY 7+ L
7. n(L)dL = n (I-_—*—) e b d(r:)

where the parameters are n (the total density), a (the power

*
law slope for very low L), and L (the luminosity of the
"break" where the slope of n(L) changes rapidly). For L

greater than L*, n(L) decreases exponentially. Typical values
for a lie in the range -1.5 < @ < -1, so integrating over all
luminosities the total number of galaxies diverges. This is
not necessarily unphysical, since the total luminosity,

f L n(L)dL remains finite. Integrals of the Schechter
function can often be expressed in terms of the incomplete
gamma function (Davis 1964), e.g.,

@

Lo
8. [nydL = nT (oc+1, )
Lo L

An analog to the median luminosity galaxy is the "half-light"
object, for which half the total luminosity of the sample
comes from galaxies of higher luminosity, half from lower:

L1
2 ®
9 fundr = [LndL
0 L1
2
X1
2 ®
Jx“ e Xdx = Ix“ e X dx
0 X1
2
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14 J. M. DICKEY

*
which gives L = 0.16 L , i.e., about 2 magnitudes fainter

1/2
than L . Expressing the luminosity parameter as a magnitude
*
. L
10. M = Mg - 25Ilog L
®

we find M* typically has a value in the range -23 < M* + 5 log
h50 < -20 in the blue. *

If the parameters o and L of the Schechter function were
independent of position (i.e., a global form for the
luminosity function varying only in its normalization, n),
then many problems could be greatly simplified. For example,
distances to clusters could be estimated by measuring the

number of galaxies vs. apparent magnitude, and fitting L*.
(A more sophisticated treatment of this idea is given by
Schechter and Press, 1976.) The variation of the luminosity
function among clusters has been studied by Dressler (1978)
and more recently by Lugger (1986). Apparently there is

variation of almost two magnitudes in M* from cluster to
cluster, although this variation is not clearly associated
with cluster properties; in particular the presence of a c¢D
does not imply a depletion of moderate luminosity galaxies,
supporting Merritt’'s (1985) conclusion that cD’s are not
‘growing significantly by cannibalism at present. It remains

an open question whether either the parameters L* and a, or
the form of the luminosity function itself, vary with large
scale environment, e.g., between clusters and voids. This
would be expected in a "biased galaxy formation" scenario
(e.g., Dekel and Silk 1986) where the initial mass function of
galaxies is strongly influenced by the local mass density.
Another question about the optical luminosity function
which is currently discussed is whether different luminosity
functions should be used for different galaxy types (Sandage
et al. 1985, Binggeli 1987). If dwarf ellipticals and
ordinary ellipticals are considered separately, the luminosity
function of the larger galaxies is typically Gaussian; the
same is true for irregulars and spirals. Virgo is the only
cluster for which we have complete catalogs of galaxies faint
enough to measure various luminosity functions for different
galaxy types. It is known in many clusters that the relative
abundance of different galaxy types is a strong function of
the local density of galaxies (Dressler 1980), so it is not
implausible that at least ellipticals and spirals might have
different luminosity functions. This is certainly true at the
very high end, where_the (exclusively elliptical) cD’'s are
often so far above L that their abundance is not well fit by
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LUMINOSITY FUNCTIONS 15

the exponential cutoff of the Schechter function at the high
end.

Assuming that different galaxy types have distinct
luminosity functions, morphological segregation (e.g.,
Giovanelli and Haynes 1985, Dressler 1980) appears to require
that the overall galaxy luminosity function vary with
position, since varying the relative fractions of spiral,
elliptical and SO galaxies varies the contribution of each of
their luminosity functions to the aggregate luminosity
function. Since the colors of galaxies also correlate with
type this means that the aggregate Schechter function
parameters must also vary with color. Large scale structure
in the galaxy distribution entails more than a variation in n
with position; in fact we may need a multivariate luminosity
function, for example n(L,p) where p is the density of
galaxies in the immediate environment. Data which could be
used to derive this function are presented by Haynes in this
volume.

*

RADTO LUMINOSITY FUNCTION

Flux limited radio source catalogs are dominated by elliptical
galaxies with high luminosities [¢(L) peaks at L ~ 1025'5

W Hz-l] at very large distances (median z ~ 1). This is
because the present luminosity function is quite flat; it is
roughly fit by two power laws:

10-4 (T()LT)'O'M Mpc-3 (1021 2L 2 1024.75)

11. Ln(L) =

1.5
10-6 (1(')-_25) > Mpc-3 (102475 z L z 1026-25)

Above L = 2x1026 W Hz_1 it drops off. Evolution of the
luminosity function is critical in determining the observed
n(s), as discussed by Condon (1984a). Spiral galaxies make up
a small fraction (~1%) of the radio sources brighter than

1 mJy. Typical spirals detected at this level are nearby,

because for these ¢(L) peaks near 1021 W Hz-l. The luminosity

function for spirals is given by (Condon 1984b):

L \-0.62
-———) © Mpc3 (1019<L<1021.5)

12. Ln(L) = 0.1 (1019
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16 J. M. DICKEY

Above L = 1021'5 watt Hz-1 the density of spirals drops off,
and ellipticals dominate. An alternative form suggested by
Hummel (1981, cf. Gavazzi and Jaffe 1986) is a log-normal
luminosity function: '

log L - log LO)2

202

Ln(l) o exp

with o = 0.67. Lo’ the mean luminosity, is roughly
proportional to optical luminosity, with Lo = 1021 watt Hz-1
for M_ = -20.

p

To study the radio luminosity function of normal galaxies
in the present epoch requires that we sift through a large
sample of radio sources, selecting those few associated with
optically bright, nearby galaxies. This preselection by
optical properties causes a bias for optically brighter
objects. To properly include this selection in a statistical
treatment requires computation of the bivariate radio
luminosity function (BRLF), f(P,M), which gives the fraction
of all galaxies with optical magnitudes M to M+dM which have
radio luminosity P to P+dP (Auriemma et al. 1977, Hummel
et al. 1983). A simpler approach is to compute the radio-
optical ratio function, RORF, given by f(R), the fraction of
galaxies with radio-optical luminosity ratio in the range R to
R+dR, where R is commonly defined as

(hdg - 12.5)
13. R = Sq400 10 2.5

(Condon 1980). Either of these functions can be written as a
differential function, f(R), or integral (cumulative) function
F>(R).

Results for f(R) are summarized by Gavazzi and Jaffe
(1986), who find a log-normal distribution for f(R), with mean
value R = 10 for Sc’'s and R = 25 for Sb’s, and width o =
O.67.in010g R, i.e., a facto? of five in R.

INFRARED LUMINOSITY FUNCTION
The luminosity function in the far infra-red has been derived
from IRAS data by Hacking and Houck (1987). The visibility

function and the possibility of evolution in this luminosity
function are discussed by Hacking, Condon and Houck (1987).
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LUMINOSITY FUNCTIONS 17

Ratio functions of radio-infrared luminosity and radio-optical
luminosity are presented by Hummel et al. (1988). The far IR-
radio luminosity ratio is remarkably constant among spiral
galaxies (Helou et al. 1985, DeJong et al. 1985, Beck and
Golla 1988). The dispersion in this ratio is only about 0.2
(Wunderlich and Klein 1988), which means that f(R) is almost a
delta function (although Seyferts and blue compact dwarfs show
higher values than normal spirals). Thus the radio luminosity
is a good predictor of the FIR luminosity for spirals.

Both the radio and FIR luminosity functions show a
variation between cluster and field, which is most easily seen
in the ratio functions (Gavazzi and Jaffe 1986, Bicay and
Giovanelli 1987). The effect is that spiral galaxies in rich
clusters which show evidence for HI deficiency tend to have
lower radio continuum luminosity and cooler FIR colors
(SGOpm/3100pm) than similar field galaxies. This is often

explained as a quenching of the star formation rate by
stripping of the galaxy’s interstellar gas. On the other
hand, a few spirals in rich clusters show significantly
enhanced radio emission, which suggests a burst of star
formation during the first passage of a spiral through the
intra cluster medium.
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