Adapted from P. Coles, 1999, The Routledge Critical Dictionary of the New Cosmology, Routledge Inc., New York. Reprinted with the author's permission. To order this book click here: http://www.routledge-ny.com/books.cfm?isbn=0415923549
Often in physics we have to apply relatively simple physical laws to extremely complicated situations. Although it is straightforward to write down the equations necessary to calculate what a given physical system will do, it may be difficult to solve these equations unless the situation has a particular symmetry, or if some aspects of the problem can be neglected. A good example lies in the construction of cosmological models using general relativity. The Einstein equations are extremely complicated, and no general solutions are available. However, if we assume that the Universe is completely homogeneous and isotropic (i.e. if we invoke the cosmological principle), then the special symmetry implied by the Robertson-Walker metric drastically simplifies the problem. We ends up with the Friedmann models, and only the relatively simple Friedman equation to solve.
But the Universe is not exactly homogeneous and isotropic now, even if the cosmic microwave background radiation suggests that it must have been so earlier on (see large-scale structure). One of the most important questions asked by cosmologists is how this structure came about. In order to make a theory of structure formation, surely we need to solve the Einstein equations for the general case of an inhomogeneous and anisotropic universe? To be precise, the answer to this question is `yes', but to be reasonably accurate the answer is `no'. Even though our Universe is not exactly homogeneous, it is almost so. If we calculate the expected departures from the Robertson-Walker metric for all the mass concentrations we know about, we find them to be small - about one part in a hundred thousand. So we need solutions of the Einstein equations that describe an almost but not quite homogeneous universe. For this we need a model which is almost a Friedmann model, but not quite.
The mathematical technique for generating solutions of equations
that are almost the same as solutions you already know is called
perturbation theory, and it is used in many branches of physics other
than cosmology. The basic idea can be illustrated as follows. Suppose
we have to calculate (1.0001)9 without using a calculator. This
problem can be thought of as being almost like calculating
19, because the quantity in brackets is not far from 1; and
19 is just 1. Suppose
that we represent the extra 0.0001 we have to deal with by the symbol
. The problem now is to
calculate the product of nine terms 1 +
: (1
+
) (1 +
)....(1 +
). Now imagine multiplying out
this expression
term by term. Since there are nine brackets each with two terms (a 1
and an
), there are
29 = 512 combinations altogether - quite a
task. The first term would be a 1, which is obtained by multiplying
all the 1's in all the brackets. This would be the biggest term,
because there are no other terms bigger than 1 and all the terms
containing
are much
smaller. If we multiplied the
in the first
bracket by the 1's in all the others, we would get
. By taking one
and eight 1's in every possible way from the nine brackets we would
get nine terms altogether, all of which are
. Now, any other terms
made in more complicated ways that this, like five 1's and four
's,
would result in powers of
(in this case
4). But because
is
smaller than 1, all these terms are much smaller than
itself, and
very much smaller than 1. It should therefore be a good approximation
just to keep the nine terms in which
appears on its own, and ignore
terms that contain
2 or
3 or higher powers of
. This suggests that
we can write, approximately,
Going back to our original problem, we can put
The way to exploit this idea in cosmology is to begin with the
equations that describe a Friedmann model for which the
Robertson-Walker metric (which we denote here by g) holds. We know how
to handle these equations, and can solve them exactly. The we write
the equations again, not in terms of g but in terms of some other
quantity g' = g + h where h is a small
correction like
Of course, the approach breaks down when the small correction
becomes not so small. The method used above does not work at all well
for (1.1)9, for example. In the study of structure formation
by means
of the Jeans instability, the fluctuations gradually grow with time
until they become large. We then have to abandon perturbation methods
and resort to another approach. In the example above, we have to reach
for a calculator. In cosmology, the final nonlinear stages have to be
handled in a similar brute-force way, by running N-body
simulations.
FURTHER READING:
Coles, P. and Lucchin, F., Cosmology: The Origin and Evolution of
Cosmic Structure (John Wiley, Chichester, 1995), Part 3.
)9
1 + 9
= 0.0001, from which
we find that the approximate answer to be 1.0009. In fact, the right
answer is 1.000 900 36. So our approximation of taking only the
lowest-order correction (
)
to a known solution (19 = 1) works very
well in this case.
in the above
example - in other words, a perturbation. If h is small, we can
neglect all the terms of order higher than h and obtain a relatively
simple equation for how h evolves. This is the approach used to study
the growth of small primordial density fluctuations in the expanding
Universe.