Active Galactic Nuclei at the Half-Century Mark

Bradley M. Peterson The Ohio State University

Brera Lectures

April 2011

Topics to be Covered

- Lecture 1: AGN properties and taxonomy, fundamental physics of AGNs, AGN structure, AGN luminosity function and its evolution
- Lecture 2: The broad-line region, emissionline variability, reverberation mapping principles, practice, and results, AGN outflows and disk-wind models, the radius– luminosity relationship
- Lecture 3: Role of black holes, direct/indirect measurement of AGN black hole masses, relationships between BH mass and AGN/host properties, limiting uncertainties and systematics

"Active Galactic Nuclei (AGN)"

- The phrase "active nucleus" was originally used by V.A. Ambartsumian in 1968
 - "the violent motions of gaseous clouds, considerable excess radiation in the ultraviolet, relatively rapid changes in brightness, expulsions of jets and condensations" *Ambartsumian 1970*
- First use in paper title: Dan Weedman (1974)
 - "nuclei that contain extensive star formation or luminous non-thermal sources" BAAS, 6, 441
- First use in PhD dissertation title: Jean Eilek (1975)
 - "Cosmic Ray Acceleration of Gas in Active Galactic Nuclei" University of British Columbia

"Active Galactic Nuclei (AGN)"

- "Activity" was usually taken to mean "radio source"
- Came to be used to encompass "Seyfert galaxies" and "quasars"
 - "...energetic phenomena in the nuclei, or central regions, of galaxies which cannot be attributed clearly and directly to stars." Peterson 1997, An Introduction to Active Galactic Nuclei
- Modern definition: "Active nuclei are those that emit radiation that is fundamentally powered by accretion onto supermassive (> $10^6 M_{\odot}$) black holes."

Strong X-ray emission

- Strong X-ray emission
- Non-stellar ultraviolet/optical continuum emission

- Strong X-ray emission
- Non-stellar ultraviolet/optical continuum emission
- Relatively strong radio emission

- Strong X-ray emission
- Non-stellar ultraviolet/optical continuum emission
- Relatively strong radio emission
- UV through IR spectrum dominated by strong, broad emission lines.

Not every AGN shares all of these characteristics.

AGN Classification

- There are three major classes of AGNs:
 - Seyfert galaxies
 - Quasars
 - Radio galaxies

			Radio galaxies	
	Quasars	Seyferts	FRI	FR II
Luminosity	High	Low	Low	High
Accretion rate	High	High	Low	Low

LINERs are somewhat problematic in this classification.

Seyfert Galaxies

- Spiral galaxies with high surface brightness cores
 - Spectrum of core shows strong, broad emission lines

Copyright 2004, Misty Bentz, The Ohio State University Department of Astronomy

NGC 4151

Quasars

- "Quasar" is short for "quasi-stellar radio source".
 - Discovered in 1960s as radio sources.
 - Radio astronomy was an outgrowth of radar technology developed in the Second World War

Radio Galaxies

- Most radio sources were found to be associated with galaxies.
- However, some of the radio sources were high Galactic latitude (out of the Galactic plane) starlike sources.

The radio galaxy Centarus A

Quasars

- These "radio stars" had a somewhat "fuzzy" appearance.
- Some radio stars had linear features like "jets".
- These unusual sources were thus "quasi-stellar radio sources".

The brightest (still!) quasi-stellar source, 3C 273

Optical Studies of Quasi-Stellar Radio Sources

- Optical observations of these sources were made with the Hale 5m telescope on Mt. Palomar.
- Early spectra were confusing. In 1963, Maarten Schmidt identified features as redshifted emission lines.

Maarten Schmidt (left) and Allan Sandage

First Spectrum of $H\delta H\gamma H\beta$

3C 273

Comparison

4000 Å

WAVELENGTH

Quasi-Stellar Sources

 The spectral lines in 3C 273 are highly redshifted:

$$z = \frac{\Delta \lambda}{\lambda} = 0.158$$

 This is comparable to the most distant clusters of galaxies known in 1963.

3C 273

The Brightest Objects in the Universe

- For 3C 273, the large redshift implies:
 - $D \approx 680 \text{ Mpc}$
 - 3C 273 is about 100 times brighter than giant galaxies like the Milky Way or M 31.

The Andromeda Galaxy M 31

And Now Another Surprise...

- Shortly after their discovery, quasars were found to be highly variable in brightness.
- Rapid variability implies that the emitting source must be very small.

Source "Coherence"

 A variable source must be smaller than the light-travel time associated with significant variations in brightness. orightness

time

Amplitude of Optical Variability

Sizes of Quasars

- Variability on time scales as short as one day implies sources that are less than one light day in size.
- A volume the size of our Solar System produces the light of a nearly a trillion (10¹²) stars!
- This ushered in a two-decade controversy about the nature of quasars redshifts.
 - Weedman's premise: this wouldn't have happened had not the original Seyferts and original quasars been such extreme members of their respective classes

Seyferts and Quasars

- Modern view:
 - Seyferts are lower-luminosity AGNs
 - Quasars are higher-luminosity AGNs
- View in the 1960s:
 - Seyferts are relatively local spiral galaxies with rather abnormally bright cores
 - Quasars are mostly unresolved, high redshift, highly luminous, variable, non-stellar radio sources

NGC 4051 z = 0.00234log $L_{opt} = 41.2$ Mrk 79 z = 0.0222log $L_{opt} = 43.7$ PG 0953+414 z = 0.234 log L_{opt} = 45.1

Finding Quasars

 That quasars are very blue compared to stars was recognized early.

Optical color selection allows us to bypass the difficult radio identification by using "UV excess".

Quasi-Stellar Objects

- Most of these blue star-like sources are like the radioselected quasars, but are *radio-quiet*.
- These became generically known as "quasi-stellar objects", or QSOs.

Spitzer-era mean SED from Shang et al. (2006)

AGN Taxonomy

- Khachikian and Weedman (1974) found that Seyfert galaxies could be separated into two spectroscopic classes.
 - Type 1 Seyferts have broad and narrow lines

AGN Taxonomy

- Khachikian and Weedman (1974) found that Seyfert galaxies could be separated into two spectroscopic classes.
 - Type 1 Seyferts have broad and narrow lines
 - Type 2 Seyferts have only narrow lines

AGN Taxonomy

 Narrow-line Seyfert 1 (*NLS1*) galaxies are true broad-line objects, but with an especially narrow broad component, FWHM < 2000 km s⁻¹

Osterbrock & Pogge 1985

AGN Taxonomy

- Heckman (1980) identified a class of Low-Ionization Nuclear Emission Region (*LINER*) galaxies.
 - Lower ionization level lines are stronger than in Sy 2

AGN Taxonomy

- BL Lac objects
 share many quasar
 properties (blue,
 variable, radio
 sources), but have
 no emission or
 absorption lines.
 - Appear to be quasars observed along the jet axis
 - Are often subsumed into a larger class called *blazars.*

AGN Paradigm circa 1995

- Black hole plus accretion disk
- Broad-line region
- Narrow-line region
- Dusty "obscuringtorus"
- Jets (optional?)

Urry & Padovani 1995

Driving Force in AGNs

- Simple arguments suggest AGNs are powered by supermassive black holes
 - Eddington limit requires $M \ge 10^6 M_{\odot}$ for moderately luminous Seyfert galaxy with $L \approx 10^{44}$ ergs s⁻¹
 - Requirement is that self-gravity exceeds radiation pressure

Key insights: Salpeter 1964; Zel'dovich & Novikov 1964; Lynden-Bell 1969

• Energy flux

$$F = \frac{L}{4\pi r^2}$$

• Momentum flux

$$P_{\rm rad} = \frac{F}{c} = \frac{L}{4\pi r^2 c}$$

• Force due to radiation

$$F_{\rm rad} = P_{\rm rad} \sigma_e = \frac{L\sigma_e}{4\pi r^2 c}$$

$$\frac{L\sigma_e}{4\pi r^2 c} < \frac{GMm}{r^2}$$
$$L < \frac{4\pi Gcm}{\sigma_e} M \approx 1.26 \times 10^{38} \left(\frac{M}{M_{\odot}}\right) \text{ergs s}^{-1}$$

"The Eddington Limit"

- Potential energy of infalling mass *m* is converted to radiant energy with some efficiency η so $E = \eta mc^2$

– Potential energy is $U = GM_{BH}m/r$

- Energy dissipated at ~10 R_g where $R_g = GM_{BH}/c^2$ (to be shown)
- Available energy:

$$U = \frac{GM_{\rm BH}m}{10R_g} = 0.1 \frac{GM_{\rm BH}m}{GM_{\rm BH}/c^2} = 0.1mc^2$$

– Thus the efficiency of accretion $\eta\approx 0.1$

Compare to hydrogen fusion 4H \rightarrow He with η = 0.007

Eddington Rate

- Accretion rate necessary to attain Eddington Iuminosity is the maximum possible
- Eddington rate is ratio of actual accretion rate to maximum possible

$$\dot{m} \equiv \lambda = \dot{M} / \dot{M}_{Edd}$$

Accretion Disks

4

 Angular momentum of infalling material will lead to formation of an accretion disk.

$$L = \frac{GM_{\rm BH}\dot{M}}{2r} = 2\pi r^2 \sigma T$$
$$T(r) = \left(\frac{GM_{\rm BH}\dot{M}}{4\pi\sigma r^3}\right)^{1/4}$$

 $T(r) \approx 3.7 \times 10^5 \,\dot{m}^{1/4}$

10 µ гл

1μm

10 ст

1 ст

1 տ տ

100 µ m

Assuming that QSO SED peak at 1000 Å represents accretion disk, Wien's law tells us $T \approx 5 \times 10^5$ K.

K

(stim Area in the second seco

For $M_{\rm BH}$ = 10⁸ M_{\odot} , $R \approx 14 R_{\rm g}$.

R

 $\frac{M_{BH}}{10^8 M_{\odot}}$

1000 Å 0.12 keV 1.2 keV
Other Quasar Properties

- Quasars as radio sources
 - High spin, conservation of B field leads to jet formation
 - Jets are common, but apparently not mandatory
- Quasars as X-ray sources
 - All highly accreting objects are X-ray sources
 - Hard X-rays (~ 10 keV) are the surest identifier of an active nucleus

Even Quiescent Galaxies Should Harbor Black Holes

- The comoving space density of quasars was much higher in the past (z ~ 2 - 3); where are they now?
- Integrated flux density of quasars reveals the integrated accretion history of black holes. (Soltan 1982)

Evidence for Supermassive Black Holes

 Milky Way: Stars orbit a black hole of 2.6 ×10⁶M_☉.

• NGC 4258: H_2O megamaser radial velocities and proper motions give a mass 4 ×10⁷ M_{\odot} .

Evidence for Supermassive Black Holes

- In the case of AGNs, reverberation mapping of the broad emission lines can be used to measure black hole masses.
 - Later elaboration

$$M_{\rm BH} \propto \frac{\Delta V^2 R}{G} \Rightarrow \Delta V \propto R^{-1/2}$$

The Broad-Line Region

- UV, optical, and IR permitted lines have broad components
 - 1000 ≤ FWHM ≤ 25,000 km s⁻¹
 - Spectra are typical of photoionized gases at $T \approx 10^4$ K
 - Absence of forbidden lines implies high density
 - C III] $\lambda 1909 \Rightarrow$ $n_{\rm e} < 10^{10} {\rm cm}^{-3}$

Photoionization Equilibrium Modeling

- Tool of long standing in AGNs
 Davidson & Netzer 1979
- Simple photoionization models are characterized by:
 - 1) Shape of the ionizing continuum
 - 2) Elemental abundances
 - 3) Particle density
 - 4) An ionization parameter *U* that is proportional to ratio of ionization rate to recombination rate

The (Dimensionless) lonization Parameter U

Rate at which H-ionizing photons are emitted by source.

$$Q_{\rm ion}(H) = \int_{V_{\rm ion}}^{\infty} \frac{L_{\nu}}{h\nu} \, d\nu$$

Ratio of ionizing photon density at distance r from source to particle density.

$$U = \frac{Q_{\rm ion}(H)}{4\pi r^2 c n_{\rm H}}$$

Davidson 1972

A Simple Model

Assumptions:

- AGN-like continuum
- Solar abundances
- Fixed density 10¹¹ cm⁻³
- Maximum column density
- Output product:
 - Predicted flux ratios as a function of *U*
- Conclusion:
 - Best fit to AGN spectrum is $U \approx 10^{-2}$

Photoionization Model of the BLR in NGC 4151

- Limitations:
 - Single-cloud model cannot simultaneously fit low and high-ionization lines.
 - Energy budget problem: line luminosities require more than 100% of the continuum energy

Ferland & Mushotzky 1982

Broad-Line Profiles

 For the most part, broad-line profiles tell us little about kinematics.

Double-Peaked Emission Lines

- A relatively small subset of AGNs have double-peaked profiles that are characteristic of rotation.
 - Tendency to appear in low accretion-rate objects
 - Disks are not simple; non-axisymmetric.
 - Sometimes also seen in difference or rms spectra.

NGC 1097 Storchi-Bergmann et al. 2003

Luminosity Effects

- Average line spectra of AGNs are amazingly similar over a wide range of luminosity.
- Exception: Baldwin Effect
 - Relative to continuum, C IV λ1549 is weaker in more luminous objects
 - Origin unknown

SDSS composites, by luminosity Vanden Berk et al. (2004)

Dust Reverberation

- Near-IR continuum variations follow those of the UV/optical with a time-delay:
 - Time delays are longer than broadlines
 - Time delays consistent with dust sublimation radius:

Suganuma et al. 2006

$$r_{\rm sub} = 1.3 \left(\frac{L_{\rm UV}}{10^{46} \text{ ergs s}^{-1}}\right)^{1/2} \left(\frac{T_{\rm sub}}{1500 \,\rm K}\right)^{-2.8} \text{ pc} \quad 49$$

Dust Reverberation

- IR continuum is due to \bullet reprocessed UV/optical emission at the closest point to the AGN that dust can survive.
- This probably occurs at the inner edge of the obscuring torus.
- All emission lines are inside r_{sub} : the BLR ends where dust first appears.

50

The Narrow-Line Region

- 200 < FWHM < 1000 km s⁻¹
- Partially resolvable in nearby AGNs
- In form of "ionization cones"

Falcke, Wilson, & Simpson 1998

NLR Spectra characterized by very high ionization lines

52

Photoionization Modeling

- Advantages relative to BLR:
 - Kinematics less ambiguous
 - Can use forbidden-line temperature and density diagnostics
 - Forbidden lines are not self-absorbed
- Disadvantage relative to BLR:
 - Dust!

Measuring Density

- Low density: radiative deexcitation, emissivity $\propto n_e^2$
- High density: collisional deexcitation competes, so emissivity ∝ n_e
- Cross-over point occurs at critical density n_{crit} where radiation de-excitation rate = collisional de-excitation rate
 - $n_{crit}([S II] \lambda 6716) = 1.5 \times 10^3 \text{ cm}^{-3}$
 - $n_{crit}([S II] \lambda 6731) = 3.9 \times 10^3 \text{ cm}^{-3}$

Measuring Temperature

 As temperature increases, [O III] λ 4363 increases in strength relative to [O III] λλ4959, 5007 because of increasing collisional excitation of ${}^{1}S_{0}$ level.

55

Narrow-Line Profiles

 Typically blueward asymmetric, indicating outflow and obscuration of far (redward) side.

Narrow Line Widths

- Correlate with:
 - Critical density
 - Gas near n_{crit} emits most efficiently
 - Excitation potential
- Interpretation:
 - Consistent with higher densities and higher excitation closer to accretion disk, in deeper gravitational potential

Size of the Narrow-Line Region

 $j(H\beta) = n_e^2 \alpha_{eff} (H\beta) \frac{hv}{4\pi}$ ergs s⁻¹cm⁻³ster⁻¹ For N_c clouds, total emitting volume is $N_c \times 4\pi r^3/3$ Define filling factor ε such that $\varepsilon 4\pi R^3/3 = N_c 4\pi r^3/3$

$$L(H\beta) = \iint j(H\beta) \ d\Omega \ dV = \frac{4\pi\varepsilon n_e^2}{3} 1.24 \times 10^{-25} R^3 \text{ ergs s}^{-1}$$

For *L*(Hβ) = 10⁴¹ ergs s⁻¹, $n_e = 10^3$ cm ⁻³, we get *R* = 20 ε^{1/3} pc. Typically, R ≈ 100 pc, so ε ≈ 0.01. 58

Mass of the Narrow-Line Region

$$M_{\rm NLR} = \frac{4\pi}{3} \varepsilon R^3 n_{\rm e} m_p \approx 10^6 M_{\odot}$$

The "Obscuring Torus"

- The answer to the question: "why don't Seyfert 2s have broad lines?"
- Osterbrock (1978) suggested this since a simple absorbing medium would:
 - Redden the continuum
 - Completely obscure the continuum as well as the BLR

The "Obscuring Torus"

- The key to making this work is scattering by material in the throat of the torus.
 - Prediction: scattering introduces polarization, with E vector perpendicular to axis

Spectropolarimetry of Seyfert 2 Galaxies

 Spectropolarimetry of the nuclei of Type 2 Seyferts shows Type 1 spectra in polarized light, as predicted.

Distinguishing Seyfert 2s from Other Emission-Line Galaxies

- Ionizing photon source can be distinguished from relative strength of emission
 - Best diagnostics are often weak lines
 - Fortunately, some ratios of strong lines can be used also

BPT (Baldwin, Phillips, & Terlevich 1981) diagram for SDSS emission-line galaxies in SDSS. From Groves et al. (2006).

Distinguishing Seyfert 2s from Other Emission-Line Galaxies

- BPT diagram plots pairs of flux ratios for strong lines
 - Lines closely spaced in wavelength to make insensitive to reddening

BPT (Baldwin, Phillips, & Terlevich 1981) diagram for SDSS emission-line galaxies in SDSS. From Groves et al. (2006).

 Green points: ionized by hot stars. Sequence from left to right is one of metallicity: [O III]/Hβ increases with decreasing metallicity because the [O III] lines increase in importance as a coolant. [N II]/Hα is less complicated, just depends on abundance of nitrogen relative to hydrogen.

- Blue points: ionized by a harder spectrum and high ionization parameter.
- Red points: hard spectrum, but low ionization parameter

- Problems with the torus:
 - Theoretical size
 much larger than IR
 cores of nearby AGN
 - Models are unstable

Elitzur 2006

- Solution: replace "doughnut" with system of small, dusty clouds
 - Increase emitting area
 - Better reproduces spectrum
 - Increases emitting area, smaller system
 - Can explain changes of AGN type

ype

Elitzur 2006

- A naïve expectation is that the narrow-line spectra of Sy 1 and Sy 2 are the same.
- Type 1 objects have stronger high-ionization lines.
- These are probably formed in the "throat" of the torus.

- At low luminosity, Type 2 AGNs outnumber Type 1 AGNs by 3:1
- High luminosity Type 2s ("Type 2 quasars) are exceedingly rare.
- Can be explained by a "receding torus".
 - Model below can explain apparent difference in how the projected size of the NLR scales differently in Type 1 and Type 2 objects.

Cosmic Evolution of AGNs

- Very luminous AGNs were much more common in the past.
- The "quasar era" occurred when the Universe was 10-20% its current age.

Modern Surveys

 Recent surveys are detecting luminous AGNs at very high redshift and large numbers of quasars at intermediate redshift.

SDSS quasars with z > 5.7 Fan 2006

			λ	(Å)		
	7000		8000	8500	9000	9500
		51 z=6.42	A		1	L
		24 z=6.28			Mm	
	J1623+31	12 z=6.22		+-+-+++++++++++++++++++++++++++++++++++	Mm	····
	J1048+46		+ + + +		m	
	J1250+31	30 z=6.13	and a started	1	£.,	
	J1602+42	28 z=6.07			~~~	
	J1630+40	12 z=6.05		A	~	
	J1137+35	49 z=6.01	de la desta de		- marin	which we we
	J0818+17	22 z=6.00				manymy
~	J1306+03	56 z=5.99		man and		
-	J1335+35	33 z=5.95	* r + r +	- Marine		
	J1411+12	17 z=5.93	Personal Streets	N	******	
		24 z=5.85	***	portando	- shawn	
	J0005-00	06 z=5.85	-	A	-Verene -	
	h	07 z=5.83		Anna		- Allowed
	J0836+00	54 z=5.82		1	activity and a state	COMPANY OF THE OW
	J0002+25		- trade and	min	·····	
	J0927+20	01 z=5.79	desident of the second	Maple		-uhlum.
	J1044-01		A ANALASIA	all man		
	7000	7500	8000	8500	9000	9500
			λ	(Å)		

Largest Known Redshifts

High-z Quasars

- Current highest quasar redshift z ≈ 6.4
 - Supermassive black holes appeared within a few hundred million years of the Big Bang
 - Metals in their spectra indicate processing in stars already occurred.

Fan et al. 2001

Vestergaard & Osmer 2009

Evolution of the QSO Luminosity Function

- Density evolution: quasars "turn off" and luminosity function translates downward.
- Several problems, most importantly that local density of very luminous quasars is overpredicted.

Evolution of the QSO Luminosity Function

- Luminosity evolution: quasars just become fainter with time.
- Does not agree with observation that most quasars are emitting near the Eddington limit: the typical nearby quasar is about 50 times fainter than it would have been at $z \approx$ 2.

Evolution of the AGN Luminosity

 Because we can now observe lowerluminosity AGNs at high-z, our view of evolution of the luminosity function is changing.

 Preferred scenario is now "luminositydependent density evolution" (LDDE) or "cosmic downsizing."

Comoving density of 2dF+SDSS quasars at different luminosities. 77 Croom et al. 2009

Cosmic Downsizing

 The space density of lower-luminosity AGNs peaks later in time than that of luminous AGNs.

Evolution of the AGN Luminosity Function

- Luminositydependent density evolution is most clearly seen in the Xrays
 - Low-luminosity systems are accessible at high z in Xrays

X-ray luminosity function Brandt & Hasinger 2005

79

Summary of Key Points

- Apparently all massive galaxies have supermassive black holes at their centers.
- Black holes accreting mass are "active galactic nuclei".
- A broad range of AGN phenomena are attributable to differences in inclination, luminosity, and Eddington accretion rate.
- High-luminosity AGNs were common in the past. Their remnants are quiescent black holes in massive galaxies.