Supermassive Black Holes and Their Relationships with Their Host Galaxies

Bradley M. Peterson The Ohio State University

Brera Lectures

April 2011

Topics to be Covered

- Lecture 1: AGN properties and taxonomy, fundamental physics of AGNs, AGN structure, AGN luminosity function and its evolution
- Lecture 2: The broad-line region, emissionline variability, reverberation mapping principles, practice, and results, AGN outflows and disk-wind models, the radius– luminosity relationship
- Lecture 3: Role of black holes, direct/indirect measurement of AGN black hole masses, relationships between BH mass and AGN/host properties, limiting uncertainties and systematics

Supermassive Black Holes Are Common

- Supermassive black holes are found in galaxies with large central bulge components.
- These are almost certainly remnant black holes from the quasar era.
- To understand accretion history, we need to determine black-hole demographics.

M 87, a giant elliptical SMBH > $3 \times 10^9 M_{\odot}$

Relationship Between Black Hole Mass and Host Galaxy Properties

- Remarkable since BH constitutes 0.5% of the mass of the bulge.
- Indicates a close (evolutionary?) relationship between BH growth/bulge formation?
 - Do these evolve over time?
- Do supermassive black holes affect their host galaxies?

Emerging Paradigm: Feeding and Feedback

- Supermassive black holes are "active" if there is a large reservoir of gas to "feed" them.
 - Quasars were more common in the past because less gas was locked up in stars; galaxies were gas rich.
- Once a quasar reaches a high-enough luminosity, energetic "feedback" (radiation, winds, jets) from quasars (and massive stars?) heats or removes the ISM, shutting down star formation.
 - There is thus a close correlation between black hole mass and galaxy mass.

Role of Quasars in Galaxy Formation (or why galaxy formation theorists suddenly like quasars...)

- Models of galaxy formation predict that massive galaxies should still have large reservoirs of gas and active star formation.
- Feedback from accretion onto supermassive black holes might provide the energy necessary to regulate cooling and subsequent star formation.

Does This Represent an Evolutionary Sequence?

 $\mathsf{Mass} \to$

Age →

Schawinski et al. 2007

Orange dots: Quiescent early-type galaxies Gray dots: Non-early type galaxies

Evolution of the M_{BH} — σ_* and M_{BH} — L_{bulge} Relationships

- Some claims for evolution of the $M_{\rm BH}$ - σ_* $M_{\rm BH}$ - $L_{\rm bulge}$ relationships, other claims for no evolution, or even no causal relation.
- To test this, we must use (indirect) scaling methods for strong UV emission lines for luminous and distant quasars.
 - One direct black hole mass measurement at z = 2.17 (Kaspi et al. 2007). No others at z > 0.3.

Measuring Central Black-Hole Masses

- Virial mass measurements based on motions of stars and gas in nucleus.
 - Stars
 - Advantage: gravitational forces only
 - Disadvantage: requires high spatial resolution
 - larger distance from nucleus \Rightarrow less critical test
 - Gas
 - Advantage: can be observed very close to nucleus, high spatial resolution not necessarily required
 - Disadvantage: possible role of non-gravitational forces (radiation pressure)

Virial Estimators

Source	Distance from
	central source
X-Ray Fe K α	3-10 <i>R</i> _S
Broad-Line Region	$200-10^4 R_{\rm S}$
Megamasers	$4 \times 10^4 R_{\rm S}$
Gas Dynamics	$8 \times 10^5 R_{\rm S}$
Stellar Dynamics	$10^{6} R_{\rm S}$

In units of the Schwarzschild radius $R_{\rm S} = 2GM/c^2 = 3 \times 10^{13} M_8 \,{\rm cm}$.

Mass estimates from the virial theorem:

$M = f(r \Delta V^2 / G)$

where

- r = scale length of region
- ΔV = velocity dispersion
- f = a factor of order unity, depends on details of geometry and kinematics

Direct vs. Indirect Methods

- Direct methods are based on dynamics of gas or stars accelerated by the central black hole.
 - Stellar dynamics, gas dynamics, reverberation mapping
- Indirect methods are based on observables correlated with the mass of the central black hole.
 - $M_{\rm BH}$ - σ_* and $M_{\rm BH}$ - $L_{\rm bulge}$ relationships, fundamental plane, AGN scaling relationships ($R_{\rm BLR}$ -L)

"Primary", "Secondary", and "Tertiary" Methods

- Depends on model-dependent assumptions required.
- Fewer assumptions, little model dependence:
 - Proper motions/radial velocities of stars and megamasers (Sgr A*, NGC 4258+)
- More assumptions, more model dependence:
 - Stellar dynamics, gas dynamics, reverberation mapping
 - Since the reverberation mass scale currently depends on other "primary direct" methods for a zero point, it is technically a "secondary method" though it is a "direct method."

Reverberation Mapping Results

- Reverberation lags have been measured for ~45 AGNs, mostly for Hβ, but in some cases for multiple lines.
 - AGNs with lags for multiple lines show that highest ionization emission lines respond most rapidly ⇒ ionization stratification
 - Highest ionization lines are also broadest!

A Virialized BLR

- $\Delta V \propto R^{-1/2}$ for every AGN in which it is testable.
- Suggests that gravity is the principal dynamical force in the BLR.

Kollatschny 2003

Bentz et al. 2009

Reverberation-Based Masses

 Combine size of BLR with line width to get the enclosed mass:

 $M = f(c\tau_{\rm cent}\sigma^2/G)$

- Without knowledge of the BLR kinematics and geometry, it is not possible to compute the mass accurately or to assess how large the systematic errors might be.
 - Low-inclination thin disk (f ∝ 1/sin² i) could have a huge projection correction.

Plausible BLR Geometry

- Unified models suggest that Type 1 AGNs are observed at inclinations $0^{\circ} \le i \le \sim 45^{\circ}$.
 - Lags are unaffected if axial symmetry and isotropic line emission
 - Line widths can be severely affected by inclination.
 - A "generalized thick disk" parameterization:

$$f \propto \frac{1}{(a^2 + \sin^2 i)}$$

Collin et al. (2006)

A plausible disk-wind concept based on Elvis (2000)

Evidence Inclination Matters

- Relationship between *R* (core/lobe) and FWHM.
 - Core-dominant are more face-on so lines are narrower.
 Wills & Browne 1986
- Correlation between α_{radio} and FWHM
 - Flat spectrum sources are closer to face-on and have smaller line widths
 - $\alpha_{radio} > 0.5$: Mean FWHM = 6464 km s⁻¹
 - $\alpha_{radio} < 0.5$: Mean FWHM = 4990 km s⁻¹
 - Width distribution for radio-quiets like flat spectrum sources (i.e., closer to face-on)
 Jarvis & McLure 2006

Calibration of the Reverberation Mass Scale Using $M_{\rm BH}$ — σ_*

 $M = f(c\tau_{\rm cent}\sigma^2/G)$

- Determine scale factor $\langle f \rangle$ that matches AGNs to the quiescent-galaxy $M_{\rm BH}$ - σ_* . relationship
- First estimate: $\langle f \rangle = 5.5 \pm 1.8$

Onken et al. 2004

Bulge velocity dispersion σ_{*} (km/sec)

Long-slit spectrum

IFU+AO

Calibration of the Reverberation Mass Scale Using $M_{\rm BH}$ - σ_*

 $M = f(c\tau_{\rm cent}\sigma^2/G)$

- Determine scale factor $\langle f \rangle$ that matches AGNs to the quiescent-galaxy $M_{\rm BH}$ - σ_* . relationship
- Recent estimate: (*f*) = 5.25 ± 1.21

Woo et al. 2010

Intrinsic scatter: $\Delta \log M_{\rm BH}$

20

~ 0.44 dex (Woo+2010)

~ 0.38 dex (Gültekin+2009)

The AGN M_{BH}–L_{bulge} Relationship

- Line shows best-fit to quiescent galaxies
 Gültekin et al. 2009
 - Maximum likelihood gives upper limit to intrinsic scatter $\Delta \log M_{\rm BH} \sim 0.17$ dex. - Smaller than quiescent galaxies $(\Delta \log M_{\rm BH} \sim 0.38$ dex).

Stellar and gas dynamics requires resolving the black hole radius of influence r.

Direct Comparison: NGC 3227

Davies et al. (2006)

Hicks & Malkan (2008)

Stellar dynamics: $(7 - 20) \times 10^{6} M_{\odot}$ (Davies et al. 2006) Reverberation: $7.63^{+1.62}_{-1.72} \times 10^{6} M_{\odot}$ (Denney et al. 2009) Gas dynamics: $20^{+10}_{-4} \times 10^{6} M_{\odot}$ (Hicks & Malkan 2008)

Direct Comparison: NGC 4151

Bentz et al. (2006)

Hicks & Malkan (2008)

Stellar dynamics: $\leq 70 \times 10^6 M_{\odot}$ (Onken et al. 2007) Reverberation: $(46 \pm 5) \times 10^6 M_{\odot}$ (Bentz et al. 2006) Gas dynamics: $30^{+7.5}_{-22} \times 10^6 M_{\odot}$ (Hicks & Malkan 2008)

Masses of Black Holes in AGNs

- Megamaser sources are rare.
 NGC 4258 is (almost) unique.
- Stellar and gas dynamics requires higher angular resolution to proceed further.
 - Even a 30-m telescope will not vastly expand the number of AGNs with a resolvable r.
- Reverberation is the future path for direct AGN black hole masses.
 - Trade time resolution for angular resolution.
 - Downside: resource intensive.
- To significantly increase number of measured masses, we need to go to secondary methods.

BLR Scaling with Luminosity

 To first order, AGN spectra look the same

$$U = \frac{Q(\mathrm{H})}{4\pi r^2 n_{\mathrm{H}} c} \propto \frac{L}{n_{\mathrm{H}} r^2}$$

⇒ Same ionization parameter U⇒ Same density $n_{\rm H}$

$$r \propto L^{1/2}$$

SDSS composites, by luminosity Vanden Berk et al. (2004)

BLR Radius-Luminosity Relationship

• $R \propto L^{\frac{1}{2}}$ relationship was anticipated long before it was well-measured.

Koratkar & Gaskell 1991

BLR Radius-Luminosity Relationship

- Kaspi et al. (2000) succeeded in observationally defining the *R-L* relationship
 - Increased luminosity range using PG quasars
 - PG quasars are bright compared to their hosts

Kaspi et al. 2000

Progress in Determining the Radius-Luminosity Relationship

Original PG + Seyferts (Kaspi et al. 2000) $\chi_v^2 \approx 7.29$ $R(H\beta) \propto L^{0.76}$ Expanded, reanalyzed (Kaspi et al. 2005) $\chi_v^2 \approx 5.04$ $R(H\beta) \propto L^{0.59}$ Aperture Geometries for Reverberation-Mapped AGNs

- Large apertures mitigate seeing effects.
- They also admit a lot of host galaxy starlight!

Progress in Determining the Radius-Luminosity Relationship

Original PG + Seyferts (Kaspi et al. 2000) $\chi_v^2 \approx 7.29$ $R(H\beta) \propto L^{0.76}$ Expanded, reanalyzed (Kaspi et al. 2005) $\chi_v^2 \approx 5.04$ $R(H\beta) \propto L^{0.59}$ Starlight removed, improvements to database (Bentz et al. 2009) $\chi_v^2 \approx 4.49$ $R(H\beta) \propto L^{0.49}$

BLR Radius-Luminosity Relationship

- Slope of the improved relationship is now consistent with $R \propto L^{1/2}$.
- We can use the *R-L* relationship to determine the BLR radius from luminosity, thus bypassing reverberation.

Bentz et al. 2009

How Much Intrinsic Scatter?

- Fundamental limit on accuracy of masses based on *R-L*.
- Dictates future observing strategy:
 - If intrinsic scatter is large, need reverberation programs on many more targets to overcome statistics.
 - If scatter is small, win with better reverberation data on fewer objects.

Bentz et al. 2009

R-L Relationship

- Intrinsic scatter ~0.11 dex
- Typical error bars on best reverberation data ~0.09 dex
- Conclusion: for H β over the calibrated range (41.5 $\leq \log L_{5100}$ (ergs s⁻¹) \leq 45 at $z \approx 0$), *R-L* is as effective as reverberation.
- To go to higher redshift, we need to use rest-UV lines instead of Balmer lines.
R-L Relationship for Mg II λ2798

- Little reverberation data on Mg II λ2798
 - Existing lag data ambiguous, particularly those that are contemporaneous with Balmer lines.
 - Relies on assumption that Mg II arises cospatially with Balmer lines.

Metzroth, Onken, & Peterson (2006)

R-L Relationship for Mg II λ2798

• From SDSS spectra, Shen et al. (2008) find

 $\log\left[\frac{\text{FWHM}(\text{H}\beta)}{\text{FWHM}(\text{Mg II})}\right] = 0.0062 \text{ dex}$

with scatter ~0.11 dex.

McLure & Jarvis (2002)

McGill et al. (2008)

R-L Relationship for Mg II λ2798

 Onken & Kollmeier find that the line width ratio has dependence on Eddington ratio and is correctable.

Onken & Kollmeier 2008

R-L Relationship for C IV λ 1549

- First used by Vestergaard (2002) to estimate BH masses at high-z.
- Pros:
 - Limited data suggest same R-L slope as H β (despite Baldwin Effect).
 - Consistent with virial relationship, at least in low-luminosity AGNs.
- Cons:
 - Often strong absorption, usually in blue wing.
 - Extended bases (outflows), especially in NLS1s.

Other Scaling Relationships

- The width of the narrow [O III] λ5007 line can be used as a surrogate for the stellar velocity dispersion.
- Intrinsic scatter: 0.10 0.15 dex.

Bonning et al. 2005, Gaskell 2009

Greene & Ho 2005

Bonning et al. 2005

Other Scaling Relationships

- There are other luminosity indicators that can be used as proxies for R_{BLR}:
 - 2-10 keV flux. Scatter: 0.26 dex
 - Flux H β broad component. Scatter: 0.22 dex.
 - Flux [O III] λ5007. Scatter: 0.29 dex.
 - Flux [O IV] λ25.8μm. Scatter: 0.35 dex.
- These are useful when uncontaminated continuum is difficult or impossible to measure.

Greene et al. 2010

Measurement of Central Black Hole Masses: The Mass Ladder

Scaling Relationships: Use with Caution

 When you think you're measuring mass, you're really measuring

 $M_{\rm BH} \propto R(\Delta V^2) \propto L^{1/2}(\Delta V^2)$

 When you think you're measuring Eddington ratio, you're really measuring

$$\frac{L}{L_{\rm Edd}} \propto \frac{L}{M_{\rm BH}} \propto \frac{L}{L^{1/2}} (\Delta V^2) \propto \frac{L^{1/2}}{\Delta V^2}$$

Possible Importance of Radiation Pressure

- Marconi et al. suggest that BH masses are underestimated because of failure to account for radiation pressure.
 - Important if BLR clouds have column densities $\leq 10^{23}$ cm⁻².

Marconi et al. (2008)

Possible Importance of Radiation Pressure

6.0

- **Differences** between RM and R-L masses decreases with radiation correction.
- NLS1s lie closer to the $M_{\rm BH}-\sigma_*$ relationship

46 Marconi et al. (2008)

6.0

8.5

5.5

7.5

7.0 $\log M_{\rm BH, corr}/M_{\odot}$

With correction

6.5

8.0

8.0

log M_{BH,corr}/M_c

No correction

Can CIV-Based Masses Be Trusted?

- Some claims in the literature that, while masses based on C IV and Balmer lines seem to be correlated, there is much scatter.
- There are two issues:
 Signal-to-noise S/N
 Color dependence

Green, Peng, & Ludwig 2010

Netzer et al. 2007

S/N Issue

- Accurate measurement of line widths becomes problematic at S/N < 10.
 - Error distribution becomes skewed and non-normal.
 - At very low S/N, the number of outliers (masses off by an order or magnitude or more) increases significantly.
- Claims that C IV cannot be used for BH masses are based on low-S/N spectra.

Denney et al. 2009

original

Color Dependence Issue

- C IV and Hβ/Hα mass estimates are based on UV and optical luminosities, respectively.
 - A color correction needs to be included, as empirically demonstrated.
 - In sample shown, color term decreases scatter by factor of 2!

Assef et al. 2010 (arXiv:1009.1145)

Color Dependence Issue

- Scatter decreases from 0.35 dex to 0.18 dex by applying a color correction.
 - Could be host galaxy, internal reddening, or differences in SEDs

Assef et al. 2010

Mass-Ladder Issues

- Direct methods
 - Reverberation mass-scale zero point
 - Importance of radiation pressure
 - Independence from quiescent-galaxy scale
 - BLR geometry, kinematics
 - Dynamical Methods
 - Uncertainties in distances of nearest AGNs
 - Dark matter halos, orbit libraries, other resolution-dependent systematics

Mass-Ladder Issues

Scaling relationships

- Line-width characterization
 - Goal: a simple prescription that is unbiased wrt to L, L/L_{Edd}, profile, variability, etc.

- Use of C IV emission line

- Identification and mitigation of systematics
- *R*–*L* validation

Evidence That Reverberation-Based Masses Are Reliable

1. $M_{\rm BH} - \sigma_*$ relationship

2. $M_{\rm BH} - L_{\rm bulge}$ relationship

Evidence That Reverberation-Based Masses Are Reliable

3. Virial relationship for emission-line lags (BLR radius) and line widths.

4. Direct comparisons with other direct methods:

- Stellar dynamical masses
- Gas dynamical masses

Black Hole Mass Measurements (units of $10^6 M_{\odot}$)

Galaxy	NGC 4258	NGC 3227	NGC 4151
Direct methods:			
Megamasers	38.2 ± 0.1	N/A	N/A
Stellar dynamics	33 ± 2	7–20	< 70
Gas dynamics	25 – 260	20 ⁺¹⁰ -4	30 ^{+7.5} -22
Reverberation	N/A	7.63 ± 1.7	46 ± 5
Indirect Methods:			
$M_{\rm BH}$ – σ_*	13	25	6.1
R–L scaling	N/A	15	65

References: see Peterson (2010) [arXiv:1001.3675]

Summary of Key Points

- Direct methods of mass measurement:
 - Most dynamical methods are limited by angular resolution to nearest tens of Mpc.
 - Reverberation mapping is effective even at large distances, but currently limited by systematics and dependence on other methods for calibration.
- Indirect methods:
 - Can be used for large samples, but less reliable for individual sources.