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Topics to be Covered
•

 
Lecture 1: AGN properties and taxonomy, 
fundamental physics of AGNs, AGN structure, 
AGN luminosity function and its evolution

•
 

Lecture 2: The broad-line region, emission-
 line variability, reverberation mapping 

principles, practice, and results, AGN 
outflows and disk-wind models, the radius–

 luminosity relationship
•

 
Lecture 3: Role of black holes, direct/indirect 
measurement of AGN black hole masses, 
relationships between BH mass and 
AGN/host properties, limiting uncertainties 
and systematics
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Supermassive Black Holes Are Common
•

 
Supermassive black 
holes are found in 
galaxies with large central 
bulge components.

•
 

These are almost 
certainly remnant black 
holes from the quasar 
era.

•
 

To understand accretion 
history, we need to 
determine black-hole 
demographics. M 87, a giant elliptical

SMBH > 3109 M



Relationship Between Black Hole 
Mass and Host Galaxy Properties

•
 

Remarkable since BH 
constitutes 0.5% of the 
mass of the bulge.

•
 

Indicates a close 
(evolutionary?) 
relationship between BH 
growth/bulge formation?
–

 
Do these evolve over 
time?

•
 

Do supermassive black 
holes affect their host 
galaxies?MBH

 

–
 

Lbulge

 

relationship

MBH

 

–
 

*

 

relationship

Marconi & Hunt 2004
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Emerging Paradigm: Feeding 
and Feedback

•
 

Supermassive black holes are “active”
 

if there 
is a large reservoir of gas to “feed”

 
them.

–
 

Quasars were more common in the past because 
less gas was locked up in stars; galaxies were gas 
rich.

•
 

Once a quasar reaches a high-enough 
luminosity, energetic “feedback”

 
(radiation, 

winds, jets) from quasars (and massive 
stars?) heats or removes the ISM, shutting 
down star formation.
–

 
There is thus a close correlation between black 
hole mass and galaxy mass.
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Role of Quasars in Galaxy Formation 
(or why galaxy formation theorists suddenly like 

quasars…)

•
 

Models of galaxy formation predict that 
massive galaxies should still have large 
reservoirs of gas and active star 
formation.

•
 

Feedback from accretion onto 
supermassive black holes might provide 
the energy necessary to regulate 
cooling and subsequent star formation. 
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Does This Represent an 
Evolutionary Sequence?

Schawinski et al. 2007Mass 

A
ge

 

Orange dots: Quiescent early-type galaxies
Gray dots: Non-early type galaxies
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Evolution of the MBH
 

–*
 

and 
MBH

 

–Lbulge
 

Relationships
•

 
Some claims for evolution of the MBH

 

–*

 MBH

 

–Lbulge

 

relationships, other claims for 
no evolution, or even no causal relation.

•
 

To test this, we must use (indirect) 
scaling methods for strong UV emission 
lines for luminous and distant quasars. 
–

 
One direct black hole mass measurement 
at z = 2.17 (Kaspi et al. 2007). No others at 
z > 0.3.
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Measuring Central Black-Hole Masses
•

 
Virial mass measurements based on motions 
of stars and gas in nucleus.
–

 
Stars

•

 

Advantage: gravitational forces only
•

 

Disadvantage: requires high spatial resolution
–

 

larger distance from nucleus  less critical test

–
 

Gas
•

 

Advantage: can be observed very close to nucleus, high 
spatial resolution not necessarily required

•

 

Disadvantage: possible role of non-gravitational forces 
(radiation pressure)
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Virial Estimators

Source Distance from 
central source    

X-Ray Fe K 3-10 RS 
Broad-Line Region 200104 RS 
Megamasers 4 104 RS 
Gas Dynamics 8 105 RS 
Stellar Dynamics 106 RS 

 

 
In units of the Schwarzschild radius 
RS

 

= 2GM/c2 = 3 ×

 

1013

 

M8

 

cm .

Mass estimates from the
virial theorem:

M = f (r V 2
 

/G)
where
r = scale length of

region
V =

 
velocity dispersion

f = a factor of order 
unity, depends on
details of geometry
and kinematics
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Direct vs. Indirect Methods
•

 
Direct methods are based on dynamics 
of gas or stars accelerated by the 
central black hole.
–

 
Stellar dynamics, gas dynamics, 
reverberation mapping

•
 

Indirect methods are based on 
observables correlated with the mass of 
the central black hole.
–

 
MBH

 

–* and MBH

 

–Lbulge

 

relationships, 
fundamental plane, AGN scaling 
relationships (RBLR

 

–L)
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“Primary”, “Secondary”, and 
“Tertiary”

 
Methods

•
 

Depends on model-dependent assumptions 
required.

•
 

Fewer assumptions, little model dependence:
–

 
Proper motions/radial velocities of stars and 
megamasers

 
(Sgr

 
A*, NGC 4258+)

•
 

More assumptions, more model dependence:
–

 
Stellar dynamics, gas dynamics, reverberation 
mapping

•

 

Since the reverberation mass scale currently depends on 
other “primary direct”

 

methods for a zero point, it is 
technically a “secondary method”

 

though it is a “direct 
method.”
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Reverberation 
Mapping Results

•
 

Reverberation lags 
have been measured 
for ~45 AGNs, 
mostly for H, but in 
some cases for 
multiple lines.

•
 

AGNs with lags for 
multiple lines show 
that highest 
ionization emission 
lines respond most 
rapidly  ionization 
stratification
–

 

Highest ionization 
lines are also 
broadest!



A Virialized 
BLR

•
 

V 
 

R –1/2 for 
every AGN in 
which it is 
testable.

•
 

Suggests that 
gravity is the 
principal 
dynamical force 
in the BLR.

Onken & Peterson

Mrk 110

Kollatschny 2003 Bentz et al. 2009
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Reverberation-Based Masses
•

 
Combine size of BLR with 
line width to get the 
enclosed mass:

M = f (ccent  2 /G)
•

 
Without knowledge of the 
BLR kinematics and 
geometry, it is not possible 
to compute the mass 
accurately or to assess 
how large the systematic 
errors might be.
–

 

Low-inclination thin disk (f 

 1/sin2

 

i ) could have a huge 
projection correction.
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Plausible BLR Geometry
•

 
Unified models suggest 
that Type 1 AGNs are 
observed at inclinations 
0º

 


 
i 

 
~45º.

–

 

Lags are unaffected if 
axial symmetry and 
isotropic line emission

–

 

Line widths can be 
severely affected by 
inclination.

•

 

A “generalized thick 
disk”

 

parameterization:

A plausible disk-wind concept
based on Elvis (2000)

2 2
1
( sin )f a i


Collin et al. (2006)
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Evidence Inclination Matters
•

 
Relationship between R 
(core/lobe) and FWHM.
–

 

Core-dominant are more face-on 
so lines are narrower.
Wills & Browne 1986

•
 

Correlation between radio

 

and 
FWHM
–

 

Flat spectrum sources are closer 
to face-on and have smaller line 
widths

•

 

radio

 

> 0.5: Mean FWHM = 6464 
km s-1

•

 

radio

 

< 0.5: Mean FWHM = 4990 
km s-1

•

 

Width distribution for radio-quiets 
like flat spectrum sources (i.e., 
closer to face-on)
Jarvis & McLure 2006
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M = f (ccent

 

 2

 
/G)

•
 

Determine scale 
factor f 

 
that 

matches AGNs to the 
quiescent-galaxy 
MBH

 

-* . relationship
•

 
First estimate:                   
f 

 
= 5.5 ±

 
1.8

Calibration of the Reverberation 
Mass Scale Using MBH

 

–*

Tremaine slope

Ferrarese slope

Onken et al. 2004
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Long-slit spectrum

IFU+AO



20

M = f (ccent

 

 2

 
/G)

•
 

Determine scale 
factor f 

 
that 

matches AGNs to the 
quiescent-galaxy 
MBH

 

-* . relationship
•

 
Recent estimate:

 
f 

 = 5.25 ±
 

1.21

Calibration of the Reverberation 
Mass Scale Using MBH

 

–*

Woo et al. 2010

Intrinsic scatter: log

 

MBH

 

~ 0.40 dex (Peterson 2010) 
~ 0.44 dex (Woo+2010)       
~ 0.38 dex (Gültekin+2009)
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The AGN MBH
 

–Lbulge
 

Relationship
•

 
Line shows best-fit to 
quiescent galaxies
Gültekin et al. 2009

•
 

Maximum likelihood 
gives upper limit to 
intrinsic scatter       
log

 
MBH

 

~ 0.17 dex.
–

 
Smaller than 
quiescent galaxies 
(log

 
MBH

 

~ 0.38 dex).
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Stellar and gas dynamics requires resolving the black hole radius of influence r*

Quiescent
 

galaxies            RM AGNs
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Direct Comparison: NGC 3227

Hicks & Malkan (2008)Davies et al. (2006)
Stellar dynamics: (7 –

 

20) 

 

106

 

M

 

(Davies et al. 2006)
Reverberation: 7.63+1.62

-1.72

 



 

106

 

M

 

(Denney et al. 2009)
Gas dynamics: 20+10

-4

 



 

106

 

M

 

(Hicks & Malkan

 

2008)



Direct Comparison: NGC 4151

Hicks & Malkan (2008)

Stellar dynamics: ≤

 

70 

 

106

 

M

 

(Onken et al. 2007)
Reverberation: (46 ±

 

5) 

 

106

 

M

 

(Bentz et al. 2006)
Gas dynamics: 30+7.5

-22

 



 

106

 

M

 

(Hicks & Malkan

 

2008)

Bentz et al. (2006)
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Masses of Black Holes in AGNs
•

 
Megamaser sources are rare.
–

 
NGC 4258 is (almost) unique.

•
 

Stellar and gas dynamics requires higher 
angular resolution to proceed further.
–

 
Even a 30-m telescope will not vastly expand the 
number of AGNs with a resolvable r*

•
 

Reverberation is the future path for direct 
AGN black hole masses.
–

 
Trade time resolution for angular resolution.

–
 

Downside: resource intensive.
•

 
To significantly increase number of measured 
masses, we need to go to secondary 
methods.
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BLR Scaling with Luminosity

2
HH

24
)H(

rn
L

cnr
QU 


• To first order, AGN 
spectra look the same

 Same ionization
parameter U

 Same density nH

r 
 

L1/2
SDSS composites, by luminosity

Vanden

 

Berk

 

et al. (2004)
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BLR Radius-Luminosity 
Relationship

•
 

R 
 

L½

 relationship was 
anticipated long 
before it was 
well-measured. 

Koratkar & Gaskell 1991
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BLR Radius-Luminosity 
Relationship

•
 

Kaspi et al. (2000) 
succeeded in 
observationally 
defining the R-L 
relationship
–

 
Increased luminosity 
range using PG 
quasars

–
 

PG quasars are 
bright compared to 
their hosts

Kaspi et al. 2000

R 
 

L0.7
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Progress in Determining the 
Radius-Luminosity Relationship

Original PG + Seyferts
(Kaspi et al. 2000) 

2

 

7.29
R(H) L0.76

Expanded, reanalyzed 
(Kaspi et al. 2005) 

2

 

5.04
R(H) L0.59
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Aperture Geometries 
for Reverberation-

 Mapped AGNs

•
 

Large apertures 
mitigate seeing effects.

•
 

They also admit a lot of 
host galaxy starlight!
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Image Model Residual Profile
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Progress in Determining the 
Radius-Luminosity Relationship

Original PG + Seyferts
(Kaspi et al. 2000) 

2

 

7.29
R(H) 

 

L0.76

Expanded, reanalyzed 
(Kaspi et al. 2005) 

2

 

5.04
R(H) 

 

L0.59

Starlight removed,
improvements to database 

(Bentz et al. 2009)
2

 

4.49
R(H) 

 

L0.49



BLR Radius-Luminosity 
Relationship

•
 

Slope of the improved 
relationship is now 
consistent with R 

 
L1/2.

•
 

We can use the R-L 
relationship to determine 
the BLR radius from 
luminosity, thus 
bypassing reverberation.

Bentz et al. 2009



How Much Intrinsic Scatter?

•
 

Fundamental limit on 
accuracy of masses 
based on R-L.

•
 

Dictates future observing 
strategy:
–

 

If intrinsic scatter is large, 
need reverberation 
programs on many more 
targets to overcome 
statistics.

–

 

If scatter is small, win with 
better reverberation data 
on fewer objects. Bentz et al. 2009



Highest quality data only
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R-L Relationship
•

 
Intrinsic scatter ~0.11 dex

•
 

Typical error bars on best reverberation 
data ~0.09 dex

•
 

Conclusion: for H
 

over the calibrated 
range (41.5 

 
log L5100 (ergs s-1) 

 
45 at 

z 
 

0), R-L is as effective as 
reverberation.

•
 

To go to higher redshift, we need to use 
rest-UV lines instead of Balmer lines.



R-L Relationship for Mg II
 

2798
•

 
Little reverberation 
data on Mg II 2798
–

 
Existing lag data 
ambiguous, 
particularly those that 
are contemporaneous 
with Balmer lines.

–
 

Relies on assumption 
that Mg II arises co-

 spatially with Balmer 
lines.

Metzroth, Onken, & Peterson (2006)
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R-L Relationship for Mg II
 

2798
•

 
From SDSS spectra, 
Shen

 
et al. (2008) find

with scatter ~0.11 dex.

McGill et al. (2008)

McLure & Jarvis (2002)

FWHM(H )log 0.0062 dex
FWHM(Mg II)

 
 

 

Shen et al. (2008)
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R-L Relationship for Mg II
 

2798

•
 

Onken & Kollmeier
 find that the line 

width ratio has 
dependence on 
Eddington ratio and 
is correctable.

Onken & Kollmeier 2008
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R-L Relationship for C IV
 

1549
•

 
First used by Vestergaard 
(2002) to estimate BH masses 
at high-z.

•
 

Pros:
–

 

Limited data suggest same R-L 
slope as H

 

(despite Baldwin 
Effect).

–

 

Consistent with virial relationship, 
at least in low-luminosity AGNs.

•
 

Cons:
–

 

Often strong absorption, usually in 
blue wing.

–

 

Extended bases (outflows), 
especially in NLS1s.

Kaspi et al. 
(2007)



Other Scaling 
Relationships

Bonning et al. 2005

•
 

The width of the narrow [O III] 5007 
line can be used as a surrogate for 
the stellar velocity dispersion. 

•
 

Intrinsic scatter: 0.10 –
 

0.15 dex.

Greene & Ho 2005

Bonning et al. 2005, Gaskell 2009



Other Scaling 
Relationships

•
 

There are other luminosity 
indicators that can be used 
as proxies for

 
RBLR

 

:
–

 

2-10 keV

 

flux. Scatter: 0.26 
dex

–

 

Flux H

 

broad component. 
Scatter: 0.22 dex.

–

 

Flux [O III] 5007. Scatter: 
0.29 dex.

–

 

Flux [O IV] 25.8m. Scatter: 
0.35 dex.

•
 

These are useful when 
uncontaminated continuum 
is difficult or impossible to 
measure.

Greene et al. 2010



Phenomenon: Quiescent
Galaxies

Type 2
AGNs

Type 1
AGNs

Measurement of Central Black Hole Masses: The Mass Ladder

Direct
Methods:

Stellar, gas
dynamics

Stellar, gas
dynamics

MegamasersMegamasers 1-d
RM
1-d
RM

2-d
RM
2-d
RM

Fundamental
Empirical
Relationships:

MBH

 

–

 

* AGN

 

MBH

 

–

 

*

Indirect
Methods:

Fundamental
plane:

e

 

, re

 

 * 
 MBH

[O III] line width
V  *  MBH

Broad-line width V
& size scaling with

luminosity
R 

 

L1/2

 

 MBH

Application:
High-z AGNsLow-z AGNs

BL Lac 
objects
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Scaling Relationships: 
Use with Caution

•
 

When you think you’re measuring mass, 
you’re really measuring

•
 

When you think you’re measuring 
Eddington ratio, you’re really measuring

2 1/ 2 2
BH ( ) ( )M R V L V   

1/ 2
1/ 2 2 2

Edd BH ( )
L L L LL M L V V  

 
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Possible Importance of 
Radiation Pressure

•
 

Marconi et al. suggest 
that BH masses are 
underestimated because 
of failure to account for 
radiation pressure.
–

 
Important if BLR clouds 
have column densities       


 
1023

 

cm–2.

Marconi et al. (2008)
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Possible Importance of 
Radiation Pressure

•
 

Differences between 
RM and R-L masses 
decreases with 
radiation correction.

•
 

NLS1s lie closer to the 
MBH

 

–* relationship

Marconi et al. (2008)

No correction With correction



47

Can CIV-Based Masses Be 
Trusted?

•
 

Some claims in the 
literature that, while 
masses based on C IV

 and Balmer lines 
seem to be correlated, 
there is much scatter.

•
 

There are two issues:
–

 
Signal-to-noise S/N

–
 

Color dependence

Green, Peng, & Ludwig 2010

Netzer et al. 2007
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S/N Issue
•

 
Accurate measurement of 
line widths becomes 
problematic at S/N < 10.
–

 
Error distribution becomes 
skewed and non-normal.

–
 

At very low S/N, the number 
of outliers (masses off by 
an order or magnitude or 
more) increases 
significantly.

•
 

Claims that C IV
 

cannot be 
used for BH masses are 
based on low-S/N spectra.

Denney et al. 2009
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original

S/N ~ 20

S/N ~ 10

S/N ~ 5



Color Dependence Issue
•

 
C IV and H/H

 
mass 

estimates are based on 
UV and optical 
luminosities, 
respectively.  
–

 

A color correction needs 
to be included, as 
empirically 
demonstrated.

–

 

In sample shown, color 
term decreases scatter 
by factor of 2!

Assef et al. 2010 (arXiv:1009.1145)
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Color Dependence Issue
•

 
Scatter decreases from 0.35 dex to 0.18 dex 
by applying a color correction. 
–

 
Could be host galaxy, internal reddening, or 
differences in SEDs

Assef et al. 2010
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Mass-Ladder Issues
•

 
Direct methods
–

 
Reverberation mass-scale zero point

•
 

Importance of radiation pressure 
•

 
Independence from quiescent-galaxy scale

–

 

BLR geometry, kinematics

–
 

Dynamical Methods
•

 
Uncertainties in distances of nearest AGNs

•
 

Dark matter halos, orbit libraries, other 
resolution-dependent systematics
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Mass-Ladder Issues

•
 

Scaling relationships
–

 
Line-width 
characterization

•
 

Goal: a simple 
prescription that is 
unbiased wrt

 
to L, L/LEdd

 

, 
profile, variability, etc.

–
 

Use of C IV
 

emission 
line

•
 

Identification and 
mitigation of systematics

•
 

R–L validation



Evidence That Reverberation-Based 
Masses Are Reliable

2.
 

MBH

 

–
 

Lbulge

 

relationship

1.
 

MBH

 

–
 

*

 

relationship
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Evidence That Reverberation-Based 
Masses Are Reliable

4. Direct comparisons with 
other direct methods:

–
 

Stellar dynamical masses 
–

 
Gas dynamical masses

3. Virial relationship for
emission-line lags (BLR 
radius) and line widths.



Black Hole Mass Measurements 
(units of 106

 
M

 

)
Galaxy NGC 4258 NGC 3227 NGC 4151
Direct methods:
Megamasers 38.2 ±

 
0.1 N/A N/A

Stellar dynamics 33 ±
 

2 7–20 < 70
Gas dynamics 25 –

 
260 20+10

-4 30+7.5
-22

Reverberation N/A 7.63 ±
 

1.7 46 ±
 

5
Indirect Methods:
MBH

 

–* 13 25 6.1
R–L scaling N/A 15 65

References: see Peterson (2010) [arXiv:1001.3675]
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Summary of Key Points

•
 

Direct methods of mass measurement:
–

 
Most dynamical methods are limited by angular 
resolution to nearest tens of Mpc.

–
 

Reverberation mapping is effective even at large 
distances, but currently limited by systematics

 
and 

dependence on other methods for calibration.
•

 
Indirect methods:
–

 
Can be used for large samples, but less reliable 
for individual sources.
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