
  

Origin of the Chemical Elements 

T. Rauscher1 , A. Patkós2 

 
13Department of Physics, University of Basel, Basel, Switzerland   

2Department of Atomic Physics, Eötvös Loránd University, Budapest, Hungary 

 

Summary: This chapter provides the necessary background from astrophysics, nuclear, and particle 

physics to understand the cosmic origin of the chemical elements. It reflects the year 2009 

state of the art in this extremely quickly developing interdisciplinary research direction. 

The discussion summarizes the nucleosynthetic processes in the course of the evolution of 

the Universe and the galaxies contained within, including primordial nucleosynthesis, stellar 

evolution, and explosive nucleosynthesis in single and binary systems. 
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1 INTRODUCTION 

Chemical elements are central for the existence of life and the richness and variety 

of our environment. Therefore, one of the basic questions concerns the origin of the 

chemical elements. The answer is complex because it relies on dynamical processes 

from elementary particles and nuclei to stars and galaxies. An interdisciplinary effort of 

various fields of science achieved considerable progress in this direction of research. 

The present review summarizes the state of knowledge obtained mainly from particle 

and nuclear physics, astrophysics and astronomy. 

In Sections 2 and 3 we concentrate on the two most important information sources 

concerning the earliest history of the Universe, i.e. the cosmic microwave background 

radiation and the primordial synthesis of the nuclei of the lightest chemical elements. 

Our aim is to describe, in the simplest qualitative terms, the empirical facts and the way 

their interpretation is connected with the physics of the epoch immediately following 

the Big Bang. It should become clear that the structures observed today on the largest 

distance scales reflect the nature of the quantum fluctuations of the earliest period. 

Moreover, nuclear physics combined with the basic facts of cosmology provide a 

perfect account of the primordial abundance of the lightest nuclei. In Section 4 the 

production mechanism of the elements will be discussed as they occur in the different 

stages of stellar evolution. Explosive events occurring in binary stellar systems and their 

roles in the nucleosynthesis are discussed in Section 5. The concluding Section 6 is 

devoted to the description and the interpretation of the abundance of chemical elements 

in the Sun and in the Galaxy. This includes abundance determinations from 

astronomical observations as well as from the analysis of presolar grains. The 

experimental methods to determine abundances and to study the nuclear physics 

relevant for nucleosynthesis processes are outlined. Finally, the basic ideas of Galactic 

Chemical Evolution are laid out, which combines all the knowledge concerning 

production and distribution of nuclides to a grander picture. The chapter is completed 

by a list of references, where textbooks and review articles appear alongside the 

relevant original publications. 

2 CREATION AND EARLY EVOLUTION OF MATTER IN THE 

UNIVERSE 

2.1 Evolution of the energy density in the early Universe 

The basic question addressed when investigating the history of the Universe as a 

whole in the framework of modern physics is the following: Why do we see something 

instead of detecting nothing? It originates from the common wisdom that any isolated 
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system after long enough evolution will reach thermal equilibrium, characterized by a 

homogeneous structureless distribution of its energy. Nearly 14 billion years after the 

Big Bang one observes the presence of complicated hierarchical structures on all scales, 

starting from the subnuclear world, through chemical elements, and up to the scale of 

galaxy clusters. This section will review our present understanding of how the 

structured evolution of the Universe could be sustained for a time more than 60 orders 

of magnitude longer than the characteristic time scale of the particle physics processes 

present at the moment of its ‗birth‘. 

The information concerning the constitution of the early Universe has increased 

tremendously during the past decade, mainly due to improved observations of the 

Cosmic Microwave Background Radiation (CMBR). The most important cosmologi-

cal parameters (the total energy density, the part contained in baryonic matter, the part 

of non-baryonic dark matter, other components, etc.) have been determined with percent 

level accuracy as a result of projects completed in the first decade of the 21st century 

and now appear in tables of fundamental physical data (Amsler 2008). 

 

2.1.1 Observations of CMBR 
The existence of CMBR was predicted by Alpher et al. (1948) as a direct conse-

quence of the Hot Big Bang Universe of Gamow (Lamarre and Puget 2001). It was 

discovered by Penzias and Wilson (1965). It originates from the combination of the 

once free electrons and protons into neutral atoms when the temperature of the Universe 

dropped below kT = 13.6 eV (the ionization energy of the H-atom, i.e., T = 1.58105 K) 

to nearly 1 eV (1.16104 K). (Note: In certain branches of physics it is customary to 

express temperature in eV units through the equation E = kT. The conversion is given 

by 1 eV corresponds to 1.16045104 K.) After the recombination, the Universe became 

transparent to this radiation,   which at present reaches the detectors with a redshift 

determined by the kinematics of the expansion of the Universe (Lamarre and Puget 

2001). It appears as a perfect thermal radiation with Planckian power distribution over 

more than three decades of frequency, having a temperature of T = 2.725±0.001 K. 

The first quantitative evidence for the temperature anisotropy of CMBR was 

provided by the COBE (Cosmic Background Explorer) satellite in 1992. The angular 

resolution of its detectors was 7. This enabled the collaboration to determine the first 

20 multipole moments of the fluctuating part of CMBR beyond its isotropic component. 

It has been established that the degree of anisotropy of CMBR is one part in 

one hundred thousand (10−5). There are two questions of extreme importance related to 

this anisotropy: 

1. Is this anisotropy the origin of the hierarchical structure one observes today 

in the Universe? 

2. What is the (micro)physical process behind this anisotropy? 

We shall return to the answer to the first question in Subsection 2.4. To the second 

question, we will briefly outline the answer below. 

Following the success of the COBE mission several more refined (ground based and 

balloon) measurements of the CMBR fluctuations were realized between 1998 and 
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2001. An angular resolution of about one degree has been achieved, which was further 

refined to the arc-minute level by the satellite mission Wilkinson Microwave 

Anisotropy Probe (WMAP). The combined efforts of these investigations allowed the 

determination of the multipole projection of CMBR on the sky up to angular moments 

l= 2000. The fluctuation information extracted until 2007 is presented in FIGURE 1 with 

lmax = 2000. One easily recognizes the presence of three pronounced maxima in this 

figure (possible additional, weaker maxima are discussed further below). 

 

 

FIGURE 1. Multipole fluctuation strength of the cosmic microwave background radiation as a function of the 

spherical harmonic index l. The location and the height of the first minimum favors a spatially flat Universe, 

while the level of the fluctuations in the higher multipoles (l > 400) indicates the presence of a low-density 

baryonic component ( < 5%). The measurements cover already the damping region (l > 1000). WMAP data 

are displayed together with results of earlier balloon observations. [Reprinted from Nolta et al. 2009 with kind 

permission of the first author, the WMAP Science Team, and AAS.]  

Another important characteristic of the CMBR anisotropy is its spectral power 

distribution. The measured distribution is nearly scale invariant; it is the so-called 

Zel‘dovich-Harrison spectrum (see Peebles 1993). This means that every unit in the 

logarithm of the wave number contributes almost equally to the total power. 

The small-amplitude and almost scale-invariant nature of the fluctuation spectra, 

described above, reflects the very early fluctuations of the gravitational field. First of 

all, one has to emphasize that the coupled electron-proton-photon plasma near 

recombination was oscillating in a varying gravitational field (Hu 2001). Where the 
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energy density was higher the plasma experienced the effect of a potential well, and the 

radiation emerging from this region was hotter than average. On the contrary, 

diminutions of the energy density led to a colder emission. Still, an observer located far 

from the sources detects lower temperature from denser sources due to the Sachs-Wolfe 

effect (Peebles 1993). In any case, the CMBR anisotropy actually traces the 

inhomogeneity of the gravitational potential (or total energy density) in the era of 

recombination. 

Thomson scattering of the anisotropic CMBR on the ionized hot matter of galaxy 

clusters and galaxies results in roughly 5% linear polarization of CMBR. Its presence in 

CMBR was first detected by the Degree Angular Scale Interferometer (DASI) 

experiment (J. Kovac 2002). Starting from 2003 the WMAP experiment measured also 

the temperature-polarization cross correlation jointly with the temperature-temperature 

correlation. The significance of this type of measurement is obvious since the presence 

of ionized gases corresponds to the beginning of the epoch of star formation. 

 

2.1.2 Inflationary interpretation of the CMBR 
A unique particle physics framework has been proposed which can account for the 

energy density fluctuations with the characteristics found in CMBR. One conjectures 

that the large-scale homogeneity of the Universe is due to a very early period of 

exponential inflation in its scale (Peebles 1993). 

One assumes that during the first era after the Big Bang the size of the causally 

connected regions (the horizon) remained constant, while the global scale of the 

Universe increased exponentially. This is called inflationary epoch. The wavelength of 

any physical object is redshifted in proportion with the global scale. Therefore, at a 

certain moment fluctuations with a wavelength bigger than the horizon were ‗felt‘ as 

constant fields and did not influence anymore the gravitational evolution of the matter 

and radiation at smaller length scale. 

The inflationary period in the evolution of the Universe ended at about 10−32 s after 

the Big Bang. At this moment the constant ordered potential energy density driving the 

inflation decayed into the particles observed today. Some of them may have belonged to 

a more exotic class, which can contribute to the violation of the matter-antimatter 

symmetry if they exhibit sufficiently long lifetimes (see Section 2.2). The rate of 

expansion of the horizon in the subsequent radiation- and matter-dominated eras was 

always faster than the global expansion of the Universe (see FIGURE 2). Radiation-

dominated means that the main contribution to the energy density comes from massless 

and nearly massless particles with much lower rest mass energy than the actual average 

kinetic energy. Therefore, the long-wavelength fluctuations having left during inflation 

continuously re-entered the horizon and their gravitational action was ‗felt‘ again by the 

plasma oscillations. The first maximum of the CMBR multipole moments corresponds 

to the largest wavelength fluctuations that were just entering the horizon in the moment 

of the emission of CMBR. 

Since during its evolution beyond the horizon, any dynamical change in the 

fluctuation spectra was causally forbidden, the fluctuating gravitational field 
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experienced by the recombining hydrogen atoms was directly related to the fluctuation 

spectra of the inflationary epoch, determined by the quantum fluctuations of the field(s) 

of that era. This observation leads promptly to the conclusion that the spectra should be 

very close to the Zel‘dovich-Harrison type. Detailed features of the power spectra seem 

to effectively rule out some of the concurrent inflationary models.  

Also the simplest version of the field-theoretical realization of inflation predicts a 

total energy density very close to the critical density c, which separates the parameter 

region of a recollapsing Universe from the region where a non-accelerating expansion 

continues forever. Such a Universe is spatially flat. In the apparently relevant case of 

accelerated expansion the borderline is shifted and universes somewhat above the 

critical densities might expand with no return. It is customary to measure the density of 

a specific constituent of the universe in proportion to the critical density: Ωi = i/c. 

An important prediction of the inflationary scenario for the origin of CMBR 

anisotropy is a sequence of maxima in the multipole spectrum (Hu 2001). The latest 

results (see FIGURE 1) confirm the existence of at least two further maxima, in addition to 

the main maximum known before. The new satellite-based CMBR observations by the 

European satellite PLANCK launched in May 2009 will improve the accuracy of the 

deduced cosmological parameters to 0.5% and determine the multipole projection of the 

anisotropy up to angular momentum l ~ 2500.  

 

 

FIGURE 2. Variation of the characteristic length scales during the history of the Universe. On both axes the 

logarithm of the corresponding length is measured. The wavelengths of physical phenomena (full lines) grow 

linearly with the scale parameter of the Universe. The size of the causally connected domains (dot-dashed 

line) stagnates during the exponential growth (inflation), whereas it increases faster than the length scale of 

the Universe later, i.e. quadratically in the radiation era and with 3/2 power under matter domination. 

The positions and the relative heights of these maxima allow the determination of 

the relative density of baryonic constituents among the energy carriers. The increased 

level of accuracy leads to the conclusion that the baryonic matter (building up also the 

nuclei of all chemical elements) constitutes no more than 5% of the energy content of 
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the Universe. This conclusion agrees very convincingly with the results of the 

investigation of the primordial abundance of the light chemical elements to be described 

in detail in Section 3. These facts lead us to the unavoidable conclusion that about 95% 

of the energy content of the Universe is carried by some sort of non-baryonic matter. 

(More accurate numbers will be given at the end of this section). The discovery of its 

constituents and the exploration of its extremely weak interaction with ordinary matter 

is one of the greatest challenges for the scientific research in the 21st century. 

 

2.1.3 Dark Matter: indications, candidates and signals 
 

Beyond CMBR, growing evidence is gathered on a very wide scale for the existence 

of an unknown massive constituent of galaxies and galaxy clusters. It is tempting to 

follow a unified approach describing the ―missing gravitating mass‖ from the galactic to 

cosmological scale (i.e. from a few tens of kpc to Mpc, with 1 pc = 3.26 light-

years = 3.08561013 km).  In this subsection we shortly review the main evidence 

already found and the ongoing experimental particle physics efforts for direct detection 

of the Dark Matter constituents.  

First hints for some sort of gravitating Dark Matter below the cosmological scale 

came from galactic rotation curves (some tens of kpc), then from gravitational lensing 

(up to 200 kpc), and from the existence of hot gas in galaxy clusters. The anomalous 

flattening of the rotation curves of galaxies has been discovered in the 1970s. Following 

Kepler‘s law one expects a decrease of the orbiting velocity of all objects (stars as well 

as gas particles) with increasing distance from the galactic center. Instead, without 

exception a tendency for saturation in the velocity of bright objects in all studied 

galaxies is observed. The simplest explanation is the existence of an enormous dark 

matter halo. Since the velocity measurements are based on the 21cm hydrogen 

hyperfine radiation, they cannot trace the galactic gravitational potential farther than a 

few tens of kiloparsecs. Therefore with this technique only the rise of the galactic dark 

matter (DM) haloes can be detected but one cannot find their extension. 

Dark supermassive objects of galactic cluster size are observable by the lensing 

effect exerted on the light of farther objects located along their line of sight.  According 

to General Relativity the light of distant bright objects (galaxies, quasars, bursts of 

gamma rays, for short: GRBs) is bent by massive matter located between the event and 

the observer along the line of sight. Multiple and/or distorted images arise which allow 

an estimate of the lensing mass. The magnitude of this effect, as measured in the Milky 

Way, requires even more DM out to larger distances than it was called for by the 

rotation curves (Adelmann-McCarthy et al. 2005).  

The large scale geometry of the galactic DM profile semi-quantitatively agrees with 

results of Newtonian many-body simulations, though there are definitely discrepancies 

between the simulated and observed gravitating densities at shorter distances. 

Interesting propositions were put forward by Milgrom to cure the shorter scale 

deviations with a Modified Newtonian Dynamics (MOND) (reviewed by M. Milgrom 

2008). 
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Gravitational lensing is combined with X-ray astronomy and can trace the separation 

of bright and dark matter, occurring when two smaller galaxies collide. The motion of 

the radiating matter is slowed down more than that of the DM components. As a 

consequence, the centers of the lensing and X-ray images are shifted relative to each 

other. A recent picture taken by the Chandra X-ray Telescope is considered as the first 

direct evidence for the existence of DM on the scale of galaxy clusters (D. Clowe et al. 

2006). 

Another way to estimate the strength of the gravitational potential in the bulk of 

large galaxy clusters is offered by measuring spectroscopically the average kinetic 

energy (e.g. the temperature) of the gas. One can relate the very high temperature values 

(about. 108 K) to the depth of the gravitational potential assuming the validity of the 

virial theorem for the motion of the intergalactic gas particles. Without the DM 

contribution to the binding potential the hot gas would have evaporated long time ago. 

There are three most popular DM candidates which could contribute to the 

explanation of the above wealth of observations. Historically, faint stars/planetary 

objects constituted of baryonic matter were invoked first, with masses smaller than 0.1 

solar mass (this is the mass limit minimally needed for nuclear burning and the 

subsequent electromagnetic radiation). The search for Massive Compact Halo Objects 

(MACHOs) was initiated in the early 1990s based on the so-called microlensing effect – 

a temporary variation of the brightness of a star when a MACHO crosses the line of 

sight between star and observer. This effect is sensitive to all kind of dark matter, 

baryonic or non-baryonic. The very conservative combined conclusion from these 

observations and some theoretical considerations is that at most 20% of the Galactic 

Halo can be made of stellar remnants (Alcock et al. 2000). 

Complementary to this astronomy-based proposition elementary particle physics 

suggests two distinct non-baryonic ―species‖ which originate from the extreme hot 

period of the universe and therefore could be present nearly homogeneously on all 

scales. Axions are hypothetical particles of small (10-(3-6) eV/c2) rest mass energy. They 

were introduced (Peccei and Quinn 1977) for the theoretical explanation of the strict 

validity of the symmetry of strong interactions (QCD) under the combined application 

of space- and charge reflections (CP-invariance). Although they are very light their 

kinetic energy is negligible, since they are produced in non-thermal processes. This way 

they represent the class of Cold Dark Matter. The parameter space was and is 

thoroughly searched for axions in all particle physics experiments of the last two 

decades. The presently allowed mass range is close to the limit of the astrophysical 

significance of these particles. 

The most natural DM candidates from particle physics are Weakly Interacting 

Massive Particles (WIMPs). Assuming that the thermal abundance of the WIMPs is 

determined by the annihilation and pair-production processes with themselves, one can 

estimate their present density as a function of the annihilation cross-section. It is quite 

remarkable (and is even qualified sometimes as ―WIMP miracle‖) that, using cross-

sections typical for the supersymmetric extension of the standard particle physics 

model, just the gravitating density missing on the cosmological scale is found. By this 

coincidence one identifies WIMPs with the lightest stable supersymmetric particle 
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(called neutralino). Its mass is on the scale of heavy nuclei, usually one assumes it to 

equal the mass of the tungsten atom. It would constitute pressureless cold dark matter, 

with a density calculable by analyzing its decoupling from thermal equilibrium. 

An important milestone in the WIMP-story will be reached once the Large Hadron 

Collider (LHC) at CERN begins working. The available energy covers the expected 

mass range of the most popular variants of supersymmetric extensions. Currently, 

extensive strategies are worked out for the identification of prospective new massive 

particles to be observed at LHC, along with their cosmologically motivated counterparts 

(Baltz et al. 2006). 

A positive identification at CERN would give new impetus to the underground 

direct searches WIMPs. These look for heat deposition by particles arriving from the 

nearest galactic neighbourhood into cryogenic detectors, well isolated from any other 

type of heat exchange. At present, only a single such experiment, i.e. the Dark Matter 

(DAMA) experiment in Gran Sasso, Italy, has reported a positive signal in the DM 

particle search. Already for more than five years, a seasonal variation in the heat 

deposition rate is observed, which may be caused by the DM particle flux variation 

along the orbit of the Earth (Bernabei, 2003).   

Although the analysis of CMBR excludes the domination of hot dark matter, i.e. 

relativistic weakly interacting particles, like light neutrinos, there still exists a plethora 

of more exotic propositions for the constituents of dark matter, not yet accessible for 

experimental verification, like primordial black holes, non-thermal WIMPzillas, and the 

so-called Kaluza-Klein excitations of higher dimensional theories. 

 

 

2.1.4 Dark energy,  the accelerating Universe, and the problem of distance 
measurements 

 

The expansion of the Universe is conventionally characterized by the Hubble law, 

stating that cosmological objects uniformly recede from the observer with a velocity 

proportional to their distance. The proportionality factor H has not remained constant 

during the evolution of the Universe, the rate of change being characterized by the 

deceleration parameter q0= dH-1/dt - 1 (Peebles 1993). 

The deceleration can be probed by distance measurements using type Ia supernovae. 

As explained in Section 5.3 these very energetic cosmic events occur in a rather narrow 

mass range of compact objects, with a minimal scatter in their energy output or 

luminosity L, which determines also the energy flux F reaching the observer at distance 

dL called luminosity distance. Therefore type Ia supernovae are standardizable light 

sources (standard candles), their light curves can be transformed into a universal form.  

Standard candles are important tools to measure astronomical distances. Knowing 

the luminosity (i.e. energy output) of an object, it is straightforward to calculate its 

distance by the observed brightness which drops with the inverse square of the distance 

1/r 
2. The advantage of using SN Ia is that they are outshining all the stars in a regular 

galaxy and thus can be seen and studied over vast distances. 
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More recently, the method of measuring distances with SN Ia has acquired some 

fame by showing that the Universe is expanding faster at large distances than expected 

by the standard cosmological model (Perlmutter et al. 1999, A.G. Riess et al. 1998, 

Leibundgut 2001a,b).  

The luminosities of 42 SN Ia were analysed in these pioneering publications as a 

function of their redshift. The survey comprised objects with redshift z ≤ 1 which 

corresponds to an age ≤ 10 Gy (gigayears). Assuming that the absolute magnitude of 

these objects is independent of the distance (excluding evolution effects) the apparent 

luminosities were detected on the average 60% fainter than expected in a Universe, 

whose energy density is dominated by non-relativistic matter. A number of data points 

with z ≤ 0.7 is displayed in Figure 3, all having positive deviation for the difference of 

the apparent and absolute luminosities, m−M (note that the fainter is a source the larger 

is its magnitude). The simplest interpretation is to assume the scattering of the light on 

its way from the source by some sort of ‗dust‘ (full line) leading to objects which are 

fainter than foreseen. Less conventional is to assume positive acceleration of the global 

expansion. (An accelerating source is located farther away, and will appear to be fainter 

at a certain z than expected in standard cosmology.)  

The quantitative argument is based on relating the measurements to the deceleration 

parameter defined above. In fact the luminosity distance of an object at red-shift z can 

be expressed as an integral of an expression of the varying Hubble-parameter H(z) on 

the interval (0,z), where z=0 corresponds to the observer‘s position today. When the 

red-shift is not too large, one can expand this integral into a series of z and arrive in the 

first approximation at a simple linear relation expressing Hubble‘s law of the 

dependence of the luminosity distance on the red-shift. Its first non-linear correction 

involves the deceleration parameter:  dL= (c/H0)z[1+(1-q0)z/2+…]. Dust absorption 

diminishes the source brightness irrespective the value of z. On the other hand, the 

presence of both matter and a cosmological constant will change the sign of the 

deceleration parameter with z. 

In the past decade several projects contributed to the luminosity distance 

measurements and by now the list includes over 200 events. Specifically with the help 

of the Hubble telescope 13 new SnIa were found with spectroscopically confirmed 

redshifts exceeding z=1 and at present the full sample contains already 23 z>1 objects 

(Riess et al. 2007). Such objects most strongly influence the value of the deceleration 

parameter. A combined analysis of all SnIa data yields a deceleration parameter value 

of -0.7±0.1 (Kowalski et al. 2008). Its negative value signals an accelerating expansion 

rate at distance scales comparable to the size of the Universe. 

A nonzero cosmological constant Λ in the equations describing the dynamics of the 

Universe can account for such an acceleration. The cosmological constant is related to a 

vacuum energy density (ρ) characterized by negative pressure (equation of state p=wρ, 

with w=-1). Nowadays, the more general term ‗dark energy‘ is used for the 

hypothetical agent of such an accelerating effect (acceleration requires w<-1/3). 
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FIGURE 3. Variation of the difference of the observed (m) and absolute (M ) luminosity for the SN Ia with 

redshift z, measured in a special astronomical unit, called magnitude (from Riess et al. 2001). The zero level 

corresponds to supernovae in an empty (Ω = 0) Universe. A positive difference signals sources which are 

fainter than expected. A brighter (negative) value is naturally interpreted as the decelerating action of the 

gravitational force exerted on the source by a nonzero mass energy (ΩM ≠ 0). See text for models 

corresponding to the different curves possibly producing positive values. [Reprinted from Riess et al. 2001 

with kind permission of the first author and AAS.] 

The fraction of the total energy density stored in  is not constant in time. Although 

 is constant by definition, the energy densities in the radiation and matter components 

are varying respectively as quartic and cubic inverse powers of the distance scale of the 

Universe. The early Universe until the decoupling of the photons is radiation-dominated 

and the  energy density is negligible. Initially, the matter density (including non-

baryonic dark matter) is dominating after decoupling, exerting a conventional 

decelerating effect on the motion of cosmological objects. Because of the reduction of 

the matter density with the expansion of the Universe, its contribution to the total 

energy density (and total ) may become smaller than the one of  at a given 

point in time. How early this crossover happens depends on the absolute value of  

which is not constrained by any current theory. From this point of view it is remarkable 

that M and  are of the same order of magnitude in the Universe at present. Because 

of this and the rather small value of  its impact on the cosmic expansion can only be 

detected over large distances, i.e. when studying distances of objects with large redshift 

z. In the distant future, the repulsive action of a non-zero  will more and more 

dominate. Without any additional effect, this leads to a ``Big Rip‘‘ scenario in which 

smaller and smaller volumes become causally isolated because the repulsion will be 

pushing everything apart faster than the speed of light. 

The different fits in Figure 3 correspond to different matter - dark energy 

compositions. Without cosmological constant, the deviation is always negative but its 

rate of decrease depends on ΩM. The two lower curves show cases (ΩM = 0.35 and 1.00, 
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respectively) which do not fit the measurements at all. Evidently, if the measurements 

are correct, we need either some sort of dust or dark energy. 

Because of the important consequences of these observations on cosmology, 

astronomers seriously investigate possible alternatives or data biases, such as possible 

effects of the evolution of SN Ia objects (deviation from the ‗standard candle‘ behavior 

at low metallicity), effects of light absorption by the galaxy clusters hosting the 

supernovae and by the intergalactic dust, lensing effects, etc. Although the actual dust 

content in the line of sight is not well determined, dust is not a problem in recent 

observations because astronomers make use of an empirical relation between the width 

of the SN Ia lightcurve (between rise and decay) and its absolute magnitude. By 

studying samples of closer SN Ia it was found that more energetic, brighter explosions 

also lead to a wider lightcurve. This is called the Phillips relation. It is not affected by 

dust absorption and the only assumption entering is that it is universally valid for all SN 

Ia. Thus, knowing the easily determinable lightcurve width, the absolute magnitude can 

be derived and the distance calculated by comparison to the observed relative 

magnitude of the explosion. 

The best fit rather indicates the presence of dark energy. This conclusion was largely 

determined by the object with largest z observed to date. In 2001, a SN Ia with z = 1.6 

was reported with larger apparent luminosity than expected in a matter dominated or in 

an empty Universe (Riess et al. 2001, see Figure 3). It can be reconciled with the small 

z observations by assuming that it exploded in an epoch when the matter part of the 

energy density was still dominant and the rate of the expansion was decreasing. 

Quantitatively, the fit led to ΩM = 0.35, ΩΛ = 0.65.  

The important question to be addressed in this context is the one regarding 

alternatives concerning the nature of the repulsive force. A cosmological constant 

implies an equation-of-state with w=-1 but any w<-1/3 yields repulsion. An additional, 

previously unknown, form of energy has been postulated as an alternative to the 

cosmological constant: Quintessence (Caldwell et al. 1998, Armendariz et al. 2000). It 

has repulsive properties but w≠-1. Therefore, it can be time-dependent and even have 

different values at different spatial points, contrary to a cosmological constant. Detailed 

SN Ia investigations try to put bounds not just on the size of the acceleration but also on 

the type of dark energy, i.e. the equation-of-state of the Universe. 

The most recent analyses (Riess et al. 2007, Wood-Vasey et al. 2007) employing 

much larger data sets than before are all compatible with the cosmological constant 

(w=-1) interpretation of the data and give ΩM = 0.274 with 20% statistical error. A final 

conclusion concerning the acceleration driven by a substantial cosmological constant 

might be reached by the proposed Supernova Acceleration Probe space mission. The 

project aims at the observation of around 2000 SN Ia out to a redshift z ≤ 1.2. Its launch 

is tentatively scheduled for 2013.  

The results of 5 years of WMAP satellite mission were published and its 

cosmological interpretation was studied (Komatsu et al. 2009), taking into account the 

effect of the above listed investigations. The results were interpreted by assuming that 

our Universe is flat and its energy content is a mixture of ordinary matter, gravitating 

dark matter, and dark energy. The most important cosmological parameters were 
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determined with unprecedented accuracy. The accuracy was substantially increased by 

combining the WMAP CMBR data, type Ia supernova luminosity distance 

measurements, and the largest scale components of the 2dF galaxy cluster catalogue 

(Percival et al. 2007). The supernova data are sensitive to the energy density component 

of cosmological constant type, while the galaxy clusters represent the aggregates of the 

gravitating (mainly dark) matter. This results in a value of the Hubble parameter H at 

present time of (70.1 ± 1.3) km s−1 Mpc−1. The ordinary matter content is 

(4.62 ± 0.15)%, the cold (non-relativistic) dark matter represents (23.3 ± 1.3)%, the part 

of the dark energy in the full energy density is 72.1 ± 1.5%. The projection of the 

motion of such a universe back in time leads to a highly accurate estimate of its age: 

13.73 ± 0.12 billion years. 

Concluding, it becomes a more and more established fact that the chemical elements 

formed from baryonic matter contribute less than 5% to the total energy density of the 

present Universe. In view of the complete symmetry of laws governing matter and 

antimatter in our present day Universe it is actually a rather non-trivial fact that 

baryonic matter did not completely annihilate into radiation in the hot Universe directly 

after the inflationary epoch and that the original energy density rather was transformed 

into a high-temperature gas of ordinary elementary particles. 

 

2.2 Origin of the matter-antimatter asymmetry 

On the interface of neighboring domains of baryonic and antibaryonic matter, quark-

antiquark (proton-antiproton) annihilation would lead to the emission of hard X-rays. 

The absence of this signal makes it highly probable that even if antibaryons were 

present in the early, hot Universe they had disappeared before the CMBR was emitted. 

Therefore, the observed baryonic density actually proves the presence of a matter-

antimatter asymmetry within the present horizon in our Universe (Rubakov and 

Shaposhnikov 1996, Riotto and Trodden 1999). 

In 1967 Sakharov analyzed the conditions which might lead to this asymmetry 

dynamically, instead of simply assuming it to be fixed by some initial conditions 

(Sakharov 1967). If, in a certain moment, 

1.  the elementary interactions violate the symmetry under the combined 

transformation consisting of spatial reflection (P) followed by charge 

conjugation (C) — the so-called CP symmetry, 

2. the elementary interactions violate the baryon-antibaryon symmetry, 

3. the Universe is out of thermal equilibrium, 

then a matter-antimatter density difference is produced. One can deduce the actual 

amount of asymmetry with detailed quantitative calculations. 

Without going into details, below we outline some of the scenarios proposed by 

theoretical particle physicists for the creation process of this fundamental asymmetry. 

For this we have to give a short account of the Standard Model of elementary 

interactions (Perkins 2000). (See also Chapter 8, Volume 1.) 
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Known elementary constituents of matter are quarks and leptons (see TABLE 1). Three 

families have been discovered. In each family one has two flavors of quarks and one 

lepton with the associated neutrino. The decay of the free neutron observed in 1932 and 

described first by the Fermi theory of weak interactions is understood today as the 

decay of a d-quark (one of three quarks composing the neutron) into a u-quark (which 

forms the final proton with the unchanged other two quarks) and an electron plus its 

antineutrino. The particles participating in this process constitute the lightest (1st) 

particle family of the Standard Model. 

TABLE 1. Elementary particles in the Standard Model. For each family, the first line in the center column 

refers to quark species of left- and right-handedness (L,R), the second line gives the same for the leptons, not 

participating in strong interaction processes. The field quanta mediating strong, electromagnetic, and weak 

interactions are listed in the last column. They are not specific to any particle family. 

Particle families Matter constituents 

(each has its own anti-particle) 

Interaction vector particles 

1
st 

(uL,dL), uR, dR 

(eL,νeL), eR 

 

8 gluons 

2
nd 

(cL,sL), cR, sR 

(μL,νμL), μR 

photon (γ) 

weak quanta (Z
0
, W

±
) 

3
rd 

(tL,bL), tR, bR 

(τL,ντL), τR 

 

 

Three elementary interactions act among these particles. Each of them is mediated 

by vector particles. The electromagnetic quanta, the photons, bind nuclei and electrons 

into atoms and molecules. Weak interactions are mediated by three vector fields, the W± 

and the Z0, all discovered in 1983. Gluon fields bind the quarks into protons and 

neutrons. The strong interaction quanta come in eight different, so-called colored states 

and also each quark can appear in one of three different colored states. 

It has been shown that the three Sakharov conditions might be fulfilled 

simultaneously in the Standard Model at high temperatures. The CP-violation, which 

allows the oscillation of the K0 and of the B0 mesons into their antiparticles and back, 

has been observed experimentally (in 1967 and 2001, respectively) and can be 

quantitatively understood with the present theory (Amsler et al. 2008). 

On the other hand, no sign of baryon number violation has been observed to date in 

any elementary particle physics experiment. In the Standard Model one cannot find any 

process which would involve the transformation of a proton into mesons or leptons. 

However, in the early 1970‘s, G.`t Hooft (1976) showed that in the presence of specific 

configurations of electro-weak vector fields, fermions (leptons and quarks) can be 

created or annihilated, just the difference of the baryon number and of lepton number 

(B-L) should stay constant (quarks and antiquarks actually carry ±1/3 unit of baryon 

charge, while the lepton charge of the known species is ±1.). Today the chance for such 

transitions to occur is negligible (its probability is estimated to about 10−170). However 

they must have occurred frequently when the temperature was of the order of 100 GeV 

(about 1015 K). 
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It is a very interesting coincidence that exactly at that temperature scale one expects 

the transformation of all elementary particles from massless quanta into the massive 

objects observed in today‘s experiments. The creation of the mass is due to the so-called 

Higgs effect. This consists of the condensation of an elementary scalar field (a close 

relativistic analogue of the Cooper-pairing in superconductivity). If this transformation 

had proceeded via a sufficiently strong first order phase transition, the third of 

Sakharov's criteria had been also fulfilled by the behavior of the known elementary 

interactions in the very early Universe. 

In a first order phase transition, the low-temperature (massive) phase would appear 

via thermal nucleation, which is a truly far-from-equilibrium process. Inside the bubbles 

of the new phase the baryon number-violating processes are stopped. So the question is 

this: What is the net baryon concentration frozen? 

Quarks and antiquarks traverse the phase boundaries, which represent a potential 

barrier for them. As a consequence of the complex CP-violating phase in the 

Hamiltonian describing weak interactions, the reflection and transmission amplitudes 

for matter and antimatter turn out to be different leading to an asymmetry in the 

constitution of matter and antimatter inside the bubbles. 

The quantitative details of this beautiful scenario critically depend on a single 

parameter: the strength of the self-coupling of the so called Higgs field, whose 

condensation determines the masses of all particles. This parameter is still unknown. 

The latest lower bound (Amsler et al. 2008) lies in a region where the phase 

transformation is actually continuous (beyond the end point of the first order transition 

line). The situation could be different in supersymmetric extensions of the Standard 

Model. The one explored best is the electroweak phase transition within the so-called 

Minimal Supersymmetric Standard Model (Carena et al., 2009). One expects 

considerable guidance from measurements at the Large Hadron Collider in constraining 

the parameter space to search for the origin of baryon-antibaryon asymmetry. Another 

avenue could be the very late (low-energy density) exit from the inflationary period of 

evolution (Garcia-Bellido et al. 1999, Krauss and Trodden, 1999, van Tent et al. 2004). 

If this energy scale coincides with the electroweak mass scale then the reheating of the 

Universe from its cold inflationary state would offer an out-of-equilibrium situation. 

This is the basis of the proposition of the Cold Baryogenesis scenario (Tranberg et al, 

2007). 

The resolution of the matter-antimatter asymmetry problem is an issue of central 

importance in particle physics in the twenty-first century. 

 

2.3 Evolution of the expanding Universe 

The equilibrium in the hot particle ‗soup‘ is maintained through frequent 

elementary-particle reactions mediated by the quanta of the three fundamental 

interactions. The expansion of the Universe dilutes the densities and, consequently, the 

reaction rates get gradually lower. The adiabatic expansion lowers monotonically also 

the temperature (the average energy density). (Actually, there is a one-to-one mapping 
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between time and temperature.) The following milestones can be listed in the thermal 

history of the Universe (Kolb and Turner 1990). 

First, the weak interaction quanta became massive at the temperature scale of 

100 GeV. Since then weak reactions have only occurred in contact interactions of the 

particles. At about the same time the t-quark and the Higgs quanta also decoupled from 

the ‗soup‘. The same decoupling happened for the other heavy quark species (b-quark, 

c-quark) and for the heaviest of the leptons (τ-particle) in the range 1-5 GeV (a few 

times 1013 K) of the average energy density. The τ-neutrinos remain in thermal 

equilibrium via weak neutral interactions. 

The strong interaction quanta, the gluons became extremely short ranged at around 

the temperature kT  100-200 MeV (a few times 1012 K). Computer aided quantum field 

theoretical investigations have demonstrated that quarks and gluons are confined to the 

interior of nucleons (protons and neutrons) and excited baryonic resonances below this 

temperature range (Petreczky 2007). This transformation was smooth for baryonic 

matter densities characteristic of our Universe at that epoch and for the actual mass 

values of the light quarks, very similar to the process of atomic recombination. 

At this stage no nuclear composite objects can be formed yet, since they would 

instantly disintegrate in collisions with hard electromagnetic quanta. The stabilization 

occurs for temperatures below 0.1 MeV. Primordial synthesis of light nuclei took place 

at that cooling stage of the Universe (Section 3). 

Below this temperature light nuclei and electrons form a globally neutral plasma, in 

which thermal equilibrium is maintained exclusively by electromagnetic interactions. 

The gravitational attraction of the massive and electrically screened constituents of 

matter was balanced by the radiation pressure. This dynamical equilibrium is described 

by coupled fluid equations and results in acoustic oscillations modulating the essentially 

homogeneous distribution of the constituents (Hu 2001). The dominant wavelength of 

these oscillations is determined by those density fluctuation modes which left the 

horizon during inflation and are continuously reentering, since during the radiation 

dominated period the horizon expands faster than the global scale parameter of the 

Universe increases. 

The last qualitative change occurred at the energy scale around 1 eV ( 104 K), 

when at the end of atomic recombinations the Universe became transparent to the 

propagation of electromagnetic radiation. At this moment the size of the Universe was 

about 1/1000 of its present radial scale. Today, the light emitted in the act of the last 

scattering is detected as Cosmic Microwave Background Radiation. A consistent 

interpretation of the details of its features represents (together with the primordial 

abundance of light nuclei) a unique test of all ideas concerning the earlier evolution of 

the Universe. 

 

2.4 Gravitational clustering of matter 

At the moment of the decoupling of light, the matter in the Universe became 

gravitationally unstable against density fluctuations. The key feature in understanding 

the emergence of a large-scale structure in the Universe is the statistical characterization 
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of the density fluctuations at this moment. These fluctuations are determined by the 

spectra of the acoustic oscillations which are in turn determined by the reentering 

density fluctuations of inflationary origin. This line of thought leads us to the hypothesis 

of the quantum origin of the largest-scale structures observed in the Universe. 

Amplitudes of density fluctuations at different wavelengths follow independent 

Gaussian (also called normal) statistics (see Subsection 3.6, Chapter 7, Volume 1), and 

their mean spectral power is distributed in an almost scale-invariant manner, described 

above. The absolute normalization was determined by the COBE satellite to be 1 part in 

100 000. Their evolution can be analyzed initially with the help of the linearized 

gravitational equations. The classical analysis, originally performed by Jeans (1902), 

leads to the conclusion that fluctuations above the Jeans-scale are unstable and they are 

at the origin of the formation of the oldest structures (for a modern textbook on the 

subject, see Peacock 1999). 

The non-linear stage of the clustering process can only be followed by numerical 

integration of Newton‘s equations of motion for a very large number (typically 

106 - 107) of equal-mass particles. The most interesting question studied in these N-body 

simulations concerns the mass distribution of the first galaxies. It is this feature which 

determines the frequency of the occurrence of densities sufficiently high to start nuclear 

fusion reactions in these first gravitationally bound galactic objects. 

The semi-empirical theory (Press and Schechter 1974) assumes that this distribution 

is determined by the probability of matter fluctuations obeying a Gaussian distribution 

to exceed an empirically determined threshold value. This simple idea results in an 

 M −2/3 power scaling for the statistics of the collapsed objects with different mass M. 

This means that the earliest collapsed gas clouds were small, about 105 solar masses, 

and had a temperature of a few hundred K. The thermal excitation of H2 molecules 

provides the microscopic mechanism for the further radiative cooling, which might have 

led to the formation of the first minigalaxies and/or quasars. If sufficient quantities of 

H2 molecules were present then the first stars and black holes were born very early, at a 

redshift z ~ 20 i..e. some 12 billion years ago, when the characteristic size of the 

Universe was z+1 times smaller than it is at present). If the dominant radiative cooling 

mechanism was the excitation of the atomic hydrogen, then the first objects with nearly 

108 solar masses were formed at a temperature of 104 K. The first galaxies appeared in 

this case only for a redshift z ~ 10. One expects that astronomical surveys of the coming 

years will be able to reach the distance which can be calculated from the Hubble law 

d = H/v, where the Hubble parameter H was defined in Subsection 2.1.4. The explora-

tion of this distance scale should bring evidence for the existence of the first galaxies. 

According to the latest WMAP results (Komatsu et al. 2009) the first galaxies were 

formed at z=10.8 ± 1.4. 

The Millenium Simulation (Springel et al. 2005) is an N-body simulation tracing 

over 10 billion mass points, representing fractions of the primordial gas, from the time 

of the CMBR decoupling to the present-day Universe. This simulation showed that it 

was necessary to assume cold dark matter (consisting of slowly moving, heavy 

particles) to reproduce the large-scale structures found in galactic surveys. It was also 
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able to show that bright quasars are formed already at very early stages, thus confirming 

observational results from the Sloane Digital Sky Survey (Anderson et al. 2001, 

Abazajian et al. 2009) which challenged traditional models of structure formation. 

The radiative cooling and further gravitational evolution of the collapsed clouds 

leads to the appearance of the first stars (see Subsection 4.1.1). 

3 PRIMORDIAL NUCLEOSYNTHESIS 

3.1 Weak decoupling 

After the quark-hadron phase transition no free quarks or gluons exist anymore. The 

hot plasma is composed of neutrons, protons, electrons, positrons, photons, and the 

electron-, muon-, and tau-neutrinos and their antineutrinos. Basically, all particles with 

masses 
2/2 ckT<m are present because the respective particle-antiparticle pairs can 

be created in photon collisions. Scattering reactions thermalize all plasma constituents 

to the same temperature and forward and reverse reactions are in equilibrium. For 

instance, protons can be converted into neutrons by electron capture 

eν+np+e ↔
, neutrons into protons by positron capture e

+ ν+pn+e ↔ . 

While all other constituents are highly relativistic, the nucleons are slower due to their 

large mass. Their kinetic energy exhibits a Maxwell-Boltzmann distribution appropriate 

for the given plasma temperature. Although formation and destruction reactions are in 

equilibrium, protons will be more abundant because of their lower mass. The ratio of 

neutron to proton number densities only depends on the temperature and the mass 

difference Δm  between the nucleons as long as the reaction equilibria apply (Börner 

1988, Kolb and Turner 1990, Peacock 1999): 

 .exp 









kT

Δmc
=

n

n 2

p

n
 (1) 

Once 1kT  MeV (i.e. at about 1010 K), the electrons are not energetic enough 

anymore to overcome the mass difference between neutrons and protons in electron 

captures. Also, photons cannot produce positrons anymore in pair-production processes 

to support positron capture on neutrons. Such weak transitions will thus cease to exist. 

Since the neutrinos were produced in such reactions, thermal communication of the 

neutrinos with the other constituents comes to an end. This phase is called weak freeze-

out and weak decoupling because the neutrinos become decoupled from the rest of the 

particles and can assume different temperatures. Since there is little, if any, interaction 

between this neutrino background and the remaining particles, its evolution is governed 

predominantly by the expansion rate of the Universe similar to the photon background 

radiation after electromagnetic decoupling that gives rise to the cosmic microwave 

background (see Subsection 2.1.1). Thus, in addition to the cosmic microwave 
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background there is a cosmic neutrino background stemming from the era of weak 

decoupling. Its temperature is lower by a factor of 0.714 because of the heating of the 

photons by e+ - e− annihilation after weak decoupling. 

With the ceasing of the electron and positron captures, the ratio of neutrons to 

protons gets frozen at the decoupling temperature, yielding a value of about 1/6. 

However, after the weak freeze-out, photons still dominate the total energy of the 

Universe and thus the temperature is decreasing as the inverse square root of the time, 

according to the law valid for a radiation-dominated Universe. The ratio between 

baryon and photon number densities γb nn=η /  characterizes a particular solution of 

the equations for the expanding early Universe and, therefore, the solutions can be 

labeled by the parameter  (olb and Turner 1990, Coles and Lucchin 1996, Riotto and 

Trodden 1999). Assuming a globally valid , the baryon density can be written as a 

function of temperature: 
3

9

4103.376 Tη=ρb  g cm−3 (T9 is the temperature in units 

of 109 K.) In fact,  is inversely proportional to the total entropy of the Universe, which 

has to remain constant. 

Together with the equation for the evolution of the temperature T9 = 13.336 / t 
1/2, this 

sets the conditions for primordial nucleosynthesis. The strength of the standard big bang 

scenario is that only one free parameter  — the above introduced baryon-to-photon 

ratio — must be specified to determine all of the primordial abundances ranging over 

10 orders of magnitude.  

The parameter  also depends on  b = b /c, i.e., the ratio of the baryon density to 

the critical density c needed for a flat Universe.  

Thus, a fit of  to observed primordial abundances not only probes the conditions in 

the early Universe at the time of nucleosynthesis but can also reveal the curvature of the 

Universe, or at least the baryonic contribution to that curvature (Schramm and 

Turner 1998). Historically, primordial nucleosynthesis was the first tool for determining 

the geometry of the Universe. With the increased accuracy in the resolution of the 

angular multipole expansion of the CMBR temperature fluctuations delivered by 

WMAP, the total density of the Universe (and not just the baryonic one) can be 

determined independently now (see Section 2.1). 

 

3.2 The reaction network and the production process of 

nucleosynthesis 

After the weak freeze-out, the baryonic matter part essentially consists of free 

neutrons and protons interacting with each other. Deuterium is constantly formed via 

neutron captures on protons. However, due to the low binding energy of the deuteron 

the created deuterons will preferably be destroyed by photodisintegration as long as the 

(photon) temperature is higher than 109 K. Below that temperature, photodisintegration 

is no longer effective, and more heavy elements can be built up by further reactions on 

the deuterons. Thus, although free neutrons and protons had already existed earlier, the 
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onset of further primordial nucleosynthesis is delayed until about 2 s after the Big Bang 

(Boesgaard and Steigman 1985, Bernstein et al. 1991). 

Because free neutrons are not stable, but decay with a half-life of 

T1/2 = (10.25 ± 0.015) min, the neutron-to-proton ratio will change from 1/6 to 1/7 until 

the onset of primordial nucleosynthesis.  

While the Universe expands further, it cools down and the decreased energy of the 

photons cannot prevent significant formation of deuterons anymore. Thereafter, heavier 

nuclides can be created by reactions involving protons, neutrons, and the newly formed 

nuclear species (Schramm and Turner 1998, Sarkar 1996). This is nothing else than a 

freeze-out from a high-temperature, low-density nuclear statistical equilibrium (NSE), 

similar to the one occurring in late and explosive phases of nucleosynthesis (see 

Sections 4.4 and 4.5) but at different density. An NSE is defined by all reactions via the 

strong and electromagnetic forces being in equilibrium. The equilibrium abundances are 

then only determined by the (baryon) density, the temperature, and the binding energy 

of the nuclei, as well as by the initial composition of the material, i.e. the neutron-to-

proton ratio. The latter is set by the weak freeze-out and the subsequent neutron decay. 

In a high-temperature NSE, all nuclei are completely dismantled into their constituents, 

the protons and neutrons. Assuming a quick freeze-out in such a manner that late-time 

non-equilibrium reactions will not significantly alter the NSE abundances, the resulting 

abundances can already be determined without detailed reaction network calculations. 

With decreasing temperature, simply the most strongly bound nuclei at the given 

neutron-to-proton ratio will be formed. Thus, we expect to find mainly unprocessed 

protons and 4He nuclei, exhibiting a high binding energy, with all neutrons having been 

incorporated into the 4He nuclides. Formation of elements beyond He is hindered by the 

fact that there are no nuclei with mass numbers 5 and 8. The 3 reaction (see Section 

4.3) could convert 4He to 12C but is not in equilibrium because it is strongly dependent 

on the density and too slow at the conditions in the early Universe. Nuclei close to 4He 

are produced according to their binding energies. 

The important reactions and the produced nuclear species are shown in Figure 

FIGURE 4. The conditions at the onset of and during the nucleosynthesis are given by the 

initial values and parameters discussed above, with  being a free parameter. 



 

 Origin of the Chemical Elements 

 

22 

 

FIGURE 4. The reaction network of standard big bang nucleosynthesis. Unstable nuclear species are marked by 

dashed boxes. When all reactions are stopped, the unstable 
7
Be decays to 

7
Li and 

3
H decays to 

3
He. 

A typical result of a full network calculation for a specific  is shown in Figure 5 

(Tytler et al. 2000, Kolb and Turner 1990). As can be seen, practically no 

nucleosynthesis occurs during the first two seconds the temperature remains above 

1010 K and no other nuclides than free nucleons are favored. Only after a sufficient drop 

in temperature  deuterons are formed, 3H and 3He nuclei are produced, quickly followed 

by 4He. The neutron abundance is determined by slow beta-decay in the early phase. 

During the formation of 4He the neutron abundance suddenly drops because most of the 

neutrons are incorporated into the  particles. Slightly delayed, traces of 7Li and 7Be 

nuclei are formed. During the decline of the temperature, charged particle reactions 

freeze out quickly and after about 15-30 minutes nucleosynthesis ceases. The very few 

free neutrons decay into protons, 3H eventually also decays and so does 7Be which 

forms further 7Li. Finally, the by far most abundant species are hydrogen (protons) and 

helium (4He, i.e.  particles) which together give more than 99.9% of the baryonic 

material. Although this calculation did not assume NSE at all times, the resulting 

abundances are very close to the ones obtained from equilibrium abundances and fast 

freeze-out. Realizing the dominance of 4He due to its high binding energy, it is easy to 

understand that about 25% of the gas are made of helium. The initial n/p ratio of 1/7 

translates into mass fractions Xn = 0.125 and Xp = 0.875 (i.e. 12.5% of the gas mass 

consists of neutrons). Assuming that all neutrons combine with protons to form 4He, the 

mass fraction of 4He has to be X = 2Xn because it contains 2 neutrons and 2 protons. 

Thus, X = 0.25, i.e. 25%. 



T. Rauscher and A. Patkos 23 

 

 

FIGURE 5. Primordial abundances of different nuclear species as a function of time and temperature for a fixed 

ratio of baryon to proton number densities,  = 5.110
−10

. [Reprinted from Tytler et al. 2000 with kind 

permission of the first author and IOP.] 

 

An interesting result was obtained from the fact that the initial n/p ratio depends on 

the weak freeze-out (see above). The freeze-out time and temperature and thus also the 

resulting n/p ratio depends on the change in the degrees of freedom during freeze-out 

(Kolb and Turner 1990). Although only three neutrino families were known originally (

3=Nν ), it remained an open question whether there are more families containing 

light (nearly massless) neutrinos. Increasing the number of neutrino species increases 

the number of degrees of freedom and has a similar effect to that of a faster expansion 

resulting from larger pressure. Thus, a larger number of neutrino families would lead to 

an earlier weak decoupling at a still higher temperature. This results in a higher n/p ratio 

and consequently leads to more 4He.  
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Primordial nucleosynthesis calculations performed along these lines were able to put 

the limit 3.3νN , ruling out any further families long before any particle physics 

experiments. This was possible due to several facts: helium is very abundant and can be 

easily measured in astronomical observations, it is strongly bound and therefore robust 

during galactical chemical evolution, its abundance only weakly depends on , the 

primordial production reactions are well determined, and the half-life of the neutron 

(determining the change of the n/p ratio between weak freeze-out and onset of 

nucleosynthesis) is measured to high accuracy. This prediction on the number of 

neutrino species was later confirmed by experiments at CERN (see the article of 

D. Karlen in Hagiwara et al. 2002) directly measuring the decay widths of the Z0 boson 

in the weak interaction. 

The nuclear reaction rates (cross section) for the reactions specified in Figure 

FIGURE 4 are well determined, also at the interaction energies relevant to primordial 

nucleosynthesis which are comparatively low by nuclear physics standards. Thus, once 

the initial conditions are determined, the evolution of the different species with time and 

the final abundances can be calculated with high accuracy. The only open parameter in 

the standard Big Bang nucleosynthesis model is . Since the baryon density is 

proportional to  and the reaction rates are density dependent, the final abundances will 

also depend on the choice of . 

Figure 6 shows this dependence for a typical range of the baryon density and 

equivalently its fraction of the critical density   b. Immediately catching the eye is the 

difference between the density dependences of the different species: the 4He fraction 

increases slightly with increasing density while the deuterium and 3He fractions strongly 

decrease (note that the vertical scale of the upmost curve is linear, while those of the 

rest are logarithmic). The simple explanation is that a high density during the 

nucleosynthesis phase gives rise to a larger number of capture reactions on deuterium 

and 3He, producing more 4He but leaving less of the targets. 7Li shows a more complex 

behavior with a pronounced minimum. At low densities 7Li is produced by -capture on 
3H but is preferably destroyed at higher densities by the reaction 7Li(p,)4He. However, 

at higher densities the production of 7Be via 3He(,)7Be also increases. This 7Be is not 

destroyed by any further primordial process but eventually decays to 7Li after 

nucleosynthesis has ceased. The different density dependences of the three main 

reactions involved give rise to the minimum shown in Figure 6. 
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FIGURE 6. Primordial abundances as a function of baryon density  b or fraction of critical density  b (these 

two quantities are directly related to the baryon-to-photon ratio , see text). The widths of the curves give the 

nuclear physics uncertainties. The boxes specify the ranges of abundances and densities constrained by 

observation (there is only an upper limit for 
3
He from observation) as given in Burles et al. 1999, 2001. The 

shaded area marks the density range consistent with all observations (Burles et al. 1999, 2001). [Reprinted 

from Tytler et al. 2000 with kind permission of the first author and IOP.] 

 

3.3 Comparison of calculations and observed primordial 

abundances 

Except for helium, the abundances of the primordial isotopes change by orders of 

magnitude when varying the baryon density or , respectively. On the other hand, 4He 

is very abundant and thus it can be observed with high accuracy. Therefore, it is 

possible to determine  from comparison with primordial abundances. As outlined 

above, this means nothing less than determining the total baryon density and thus the 

baryonic contribution to the curvature of our Universe! The allowed abundance range 

for each primordial species is shown in Figure 6, combined with the calculated baryon 

density. It is reassuring that the independent observations for each species still permit a 

consistent range of , i.e., all the observations are consistent with the same baryon 

density. 
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Serious complications arise from the fact that the calculations have to be compared 

to primordial abundances, not to the ones currently found in stars or the interstellar 

medium (Boesgaard and Steigman 1985, Olive et al. 2000, Tytler et al. 2000, Olive 

2001, Steigman 2007). During the further evolution of the Universe, when stars are 

formed and destroyed, the abundances within a galaxy change with time (see 

Subsection 6.4) due to the stellar production and destruction processes (see Section 4). 

Thus, it is not trivial to determine the primordial values, especially those for isotopes 

which are weakly bound and therefore easily destroyed in stars such as deuterium, 3He 

or 7Li nuclei. In order to trace the effects of chemical evolution, the standard practice is 

to correlate the abundance of the nuclide in question with the abundance of a nuclide 

which becomes monotonically enriched in the interstellar medium during the course of 

the chemical evolution, e.g. oxygen. This other nuclide serves as a tracer of the 

metallicity of an object, i.e. the content of elements beyond hydrogen and helium (a 

technical term borrowed from astronomy). From the observation of different sites with 

different metallicities, one hopes to find trends which can be extrapolated to zero 

metallicity, i.e. to the primordial values. Figure 7 shows an example of such an 

extrapolation. 

 

FIGURE 7. Example for the extrapolation to primordial values. The primordial value of 
4
He (Yp) for zero 

metallicity (zero oxygen) is inferred from a series of observations (filled circles) (Olive 2001). For other 

primordial isotopes the slope of the interpolation would be steeper, for 
7
Li there would be a steep rise at 

higher metallicities and a flat line with nearly constant abundance at low metallicity. [Reprinted from Olive 

(2001) with permission by Springer.] 

 

The spectra of 4He are easy to observe due to its high abundance. This He isotope 

can be identified in clouds of ionized interstellar gas around bright, young stars (HII 

regions). Although the abundance in an object can be determined with high precision, a 

large systematic uncertainty remains due to observations of different objects. On the 
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other hand, the observation of 3He is difficult and an extrapolation carries a large 

uncertainty because different stars both produce and destroy it effectively. Due to its 

weak lines it cannot be seen in low-metallicity stars. The chemical evolution of 7Li is 

also complex but it can at least be seen in old stars. Such stars contain a factor of 

0.03-0.0003 less ‗metals‘ (in astronomy: all elements except H and He) than the Sun. 

Studying such stars, a remarkable discovery was made: below a certain metallicity the 

content of 7Li remains almost constant, i.e. a plateau appears in the abundance plots. 

The 7Li-plateau was thought to give the primordial value. However, the question of 

possible depletion in early stars remains to be addressed (Korn et al. 2006) as well as 

the dependence of the data on the underlying assumptions, such as model atmospheres 

(Charbonnel and Primas 2005; Asplund et al. 2006a). These problems give rise to a 

large systematic uncertainty also for 7Li. Until recently deuterium was usually observed 

in the local interstellar medium. However, the situation has greatly improved in recent 

years. It became possible to observe D absorption lines in quasar spectra (Tytler et al. 

2000). Quasar light passes through clouds at high redshift, i.e. far away and at the same 

time far back in time, which contain (almost) primordial amounts of D. Because of the 

brightness of quasars such lines can still be identified although the photons have 

traveled a long distance. In summary, only upper limits can be given for primordial 3He 

and the primordial values of 4He and 7Li have a smaller individual observational error 

compared to 3He but a considerable systematic uncertainty in the observations. The 

averaged D values from far objects seem to give the tightest constraint for Big Bang 

Nucleosynthesis (BBN) calculations (Steigman 2007). 

The dependence of primordial abundances on  b are shown in Figure 6. Using the 

available abundance information, it is found that it has to lie between about 0.038 and 

0.048, also somewhat depending on the choice of the value of the Hubble constant 

(Schramm and Turner 1998, Burles et al. 2001, Steigman 2007). Most recently, an 

independent value for b was derived from the WMAP data of the CMBR (see Komatsu 

et al. 2009 for latest results). The CMBR value of b=(6.11±0.2)×10-10 is in excellent 

agreement with the value derived from the BBN abundances for D and 3He. Depending 

on improvements in the observations and theoretical models of the evolution of 4He and 
7Li with metallicity, their required b may or may not remain in agreement with the 

CMBR value. However, the BBN model still is in good standing when considering the 

CMBR data due to the large systematic uncertainties inherent in the observations of the 

latter isotopes (Steigman 2007). 

Assuming only baryonic matter, the small value of b would indicate an open 

Universe, i.e., one expanding forever. However, theory of inflation demands that  = 1 

(exactly) and thus a flat Universe (Kolb and Turner 1990, Peacock 1999). This is in 

agreement with the latest observations of the CMBR as discussed in Subsection 2.1.2. 

Then the missing mass required to close the Universe must be non-baryonic. Indeed, 

there are other indications (in the initial creation and later dynamics of galaxies) that 

there is more gravitational interaction than can be accounted for by standard baryonic 

matter. Of further interest is the value of the cosmological constant (see 

Subsection 2.1.4), which was found to be non-zero in recent distance measurements 

(Perlmutter et al. 1997, Schmidt et al. 1998, Perlmutter et al. 1999, Wood-Vasey et al. 
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2007, Riess et al. 2007), using type Ia supernovae as ‗standard candles‘ 

(Subsections 2.1.4, 5.3). The cosmological constant  also provides a contribution  

 to the expansion of the Universe so that the new requirement reads 

 M+  =  b +  s +  = 1, with  s being the non-baryonic contribution (Steigman 

et al. 2000). At the time of writing, it is not clear yet what constitutes the non-baryonic 

mass. A quite general name for possible new, exotic particles is WIMP, an acronym for 

‗weakly interacting massive particle‘ (see Sections 2.1.3 and 2.1.4 for details). 

4 STELLAR NUCLEOSYNTHESIS 

4.1 Stellar evolution 

4.1.1 Birth of stars 
Stars are formed within molecular clouds, vast aggregations of molecules residing in 

the galactic disks. These clouds which often contain the mass of a million stars, are 

much denser and colder than the surrounding interstellar gas. Stars are born out of the 

collapse of small condensation areas that are scattered throughout the much larger 

volume of a molecular cloud. The collapse can occur due to random density fluctuations 

or be externally triggered, e.g., by shockwaves from supernovae or galaxy collisions. 

Soon after the collapse begins, a small pressure-supported protostar at the very center of 

the collapse flow develops. During the main collapse phase, the central protostar is 

surrounded by an inward flow of gas and dust. As the protostar evolves both the 

temperature and the density increase inside. Finally, the central core of the protostar 

heats up so much that nuclear ‗burning‘ is initiated and the star begins its energy 

production through nuclear fusion. 

Star formation is a process complicated by the details of cloud fractionation, 

rotation, turbulence, and magnetic fields. While the formation of low mass stars (below 

8 solar masses) is thought to be understood and proceeding through an accretion disk, 

the mechanism to form more massive stars is not understood as well. Due to the larger 

radiation pressure of their emissions, the accretion disk would be blown away. The 

current model assumes, consistent with observations, the formation of a directed jet, 

transporting a small fraction of material but clearing a cavity through which most of the 

radiation can escape without interaction with the accretion disk (Bannerjee and Pudritz 

2007). In this way, low mass and high mass stars could be formed in a similar manner. 

Other models assume coalescence of two or more light stars or competitive accretion of 

a low and a high mass star feeding from the same molecular cloud (Bonnel, et al., 1997; 

Bonnel and Bate 2006). 

The galactic mass distribution of the newborn stars is known as the initial mass 

function. To sustain nuclear burning in their interiors stars must at least have 8 percent 

of the mass of the Sun. During their formation, stars with a smaller mass do not release 

sufficient gravitational binding energy to heat the gas to temperatures required for 
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igniting nuclear fusion. These are called brown dwarfs. The lower-mass stars between 

about 8 and 40 percent of the mass of our Sun are called red dwarfs, because of their 

small size and their low surface temperature. At the other end of the mass range stars 

more than 100 times as massive as the Sun are highly unstable due to spontaneous pair 

production of electrons and positron from plasma interactions and therefore do not exist 

in our Universe. During their enormous life spans stars produce energy through nuclear 

fusion and shine continuously over millions to billions of years. Lower-mass stars 

consume their fuel very quietly and survive for several billion years. Massive stars, on 

the other hand, burn out in a few millions of years. 

 

4.1.2 Hertzsprung-Russel diagram 
Stars undergo drastic changes during their evolution. One of the best methods for 

charting the course of stellar evolution is the Hertzsprung-Russell (HR) diagram shown 

in Figure 8, a particular type of graph developed in the early 20th century by the 

astronomers Hertzsprung and Russel. In this diagram the luminosity or energy output of 

a star is plotted on the vertical axis, and the surface temperature of the star on the 

horizontal axis. For historical reasons, the surface temperatures along the horizontal axis 

are plotted backwards, so that they increase toward the left. In the HR diagram the 

various stars are then plotted according to their luminosity and surface temperature. As 

one can see, the stars are not distributed randomly in the HR diagram, but are rather 

grouped in certain areas. 
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FIGURE 8. The Hertzsprung-Russell (HR) diagram. In this schematic diagram the various stars are plotted 

according to their relative luminosity L/L⊙ (where L⊙ is the absolute luminosity of the Sun) and their surface 

temperature, T. 

 

Most of the stars line up along a well-defined band on the HR diagram known as the 

main sequence and are therefore also called main-sequence stars. This trend is no 

coincidence. Stars that lie along the main sequence have the proper internal 

configurations to support fusion of hydrogen to helium. Since stars spend most of their 

lifetime in this hydrogen burning state, most stars in the HR diagram are lying on the 

main-sequence band. Our Sun is also a typical main-sequence star. 

After the hydrogen supply in the core of the star is exhausted and converted to 

helium, the central temperature is too low to fuse helium into heavier elements. 

Therefore, the core lacks an energy source and cannot support anymore the overlying 

bulk of the star. Through the gravitational pressure the size of the core shrinks and the 

temperature of the central region increases accordingly. The heat released by the core 

increases steadily the luminosity of the star. Paradoxically, even though the helium core 

is shrinking, the radius of the star, determined by the outer hydrogen layer, increases by 

factors of 100 to 1000. Through this expansion, the surface temperature is reduced up to 
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50 percent and the star becomes redder. Therefore, these stars are called red giants and 

are found in the HR diagram in the upper right corner. 

When the core temperature of the red giant reaches about one hundred million 

degrees, a new sequence of nuclear reactions called helium burning begins in the core 

where helium nuclei fuse to carbon and oxygen. Our Sun has lived for 4.5 billion years 

and has already burnt half of its hydrogen in the core. After about another 5 billion 

years our Sun will also become a red giant and will thereby increase its size so much 

that the radius of the Sun will reach about the Earth‘s orbit. 

The further evolution of a star and the nature of its stellar death depend on the initial 

mass. If the initial mass of a star is less than about 8 solar masses, it is burning He 

unstably (see also the section on He burning) and the resulting pulsations lead to the 

loss of huge quantities of hot gases towards the end of its life. This cloud moving away 

from the star is called a planetary nebula. The central small and hot core of the star that 

is left over is a white dwarf and consists of the ashes of helium burning, i.e., carbon and 

oxygen. Even though the surface temperature of the white dwarf is still very hot its 

luminosity is small, because nuclear fusion has ceased. Therefore, the white dwarfs are 

found in the lower left corner of the HR diagram. 

If the initial mass of a star is more than about 8 solar masses further burning phases 

will take place. These are called advanced burning phases and consist of carbon, neon, 

oxygen, and silicon burning, being named after the nuclei mainly destroyed in that 

phase. In these subsequent burning phases heavier and heavier nuclei are built up, and 

the ashes of the preceding burning phases provide the fuel for the subsequent burning 

phases. However, in the outer and therefore cooler and less dense regions of the star the 

previous burning phases are still continuing. This leads to shell burning with distinct 

adjacent shells of different chemical compositions, in which different burning phases 

prevail. In the outermost shell of the star still hydrogen is burnt into helium (hydrogen 

burning), in the next shell helium to carbon and oxygen (helium burning), and finally, in 

the fully evolved star, there follow still carbon, oxygen, neon and silicon burning shells 

(FIGURE Figure 9). In the core of the star significant amounts of iron are accumulating 

through silicon burning. A detailed discussion of the nuclear burning phases is given in 

Subsections 4.2 through 4.4. 
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FIGURE 9. Schematic structure of the different shells of a fully evolved massive star with their prominent 

constituents. At the bottom of each shell, different burning phases take place. The iron core in the center has 

been accumulated in silicon burning. The outer part of the star consists of a thick envelope of unburned 

hydrogen. Note that the relative thickness of the layers is not drawn to scale. 

A detailed introduction to stellar evolution is given in the following books: Clayton 

1984, Hansen and Kawaler 1994, Kippenhahn and Weigert 1994, Phillips 1994, Tayler 

1994. Books and reviews discussing stellar nucleosynthesis are Rolfs and Rodney 1988, 

Arnett 1996, Thielemann et al. 2001b. Tables of nuclear reaction rates and cross 

sections can be found in Rauscher and Thielemann 2000. 

 

4.1.3 Supernova explosions 
The endpoint in the evolution of stars with more than 8 solar masses is a type II 

supernova. One should not confuse novae with supernovae and even the two types 

(i.e. type I and type II) of supernovae are quite different. It will become evident in the 

following that the sites of these explosive events are only loosely related, despite the 

similarity in the name. There is a major difference in the underlying mechanism 

between type I (SN I) and type II supernovae (SN II). The confusing choice of names is, 

once again, historical. Astronomy is guided by observations and early astronomers did 

not have the equipment to investigate the objects in any detail. Obviously, even today it 

is impossible to directly view the events in binary systems, but much more detail in 

light curves (i.e. brightness as a function of time) and spectra can be studied. 
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Historically, the comparatively frequent novae (see Subsection 5.2) were named 

first. Subsequently, much brighter eruptions of light were observed in the sky. Since 

they are brighter by more than a factor of 106, they were appropriately termed super-

novae. The light curve of a supernova is somewhat different from that of a nova: its rise 

time is only a few hours instead of days and it exponentially decays after having 

reached its peak. Closer investigations showed that several classes of supernovae can be 

found, according to features in their spectra: type I do not show hydrogen lines, whereas 

they are found in type II eruptions. This indicates whether the exploding object has an 

extended hydrogen envelope (such as massive stars). A more detailed classification 

scheme is shown in TABLE 2. Type Ia supernovae are further discussed in Subsection 5.3, 

while the unique scenario producing all other types (SNIb,c; SNII) is shortly introduced 

in the following. 

TABLE 2. Supernova classification by observed properties. Different lines can be identified in the spectra. 

The assumed scenario causing the light burst is also given. 

Characteristic explosion energy (10
44

 J) and light curve 

no H lines H lines 

Si lines no Si lines Exponential decay 

of light curve 

Plateau feature in 

light curve  He lines No He lines 

White dwarf 

disruption 

Core collapse 

(binary system?) 

Core collapse 

(binary system?) 
Core collapse Core collapse 

SN Ia SN Ib SN Ic SN II L SN II P 

 

4.1.4 Core collapse  supernovae 
When the stellar core becomes dominated by iron, the fusion into heavier elements 

does not lead to the release of energy, but rather requires absorption of energy. (Editors‘ 

note: See, e.g., Figure 13 in Chapter 5, Volume 1, showing the cross section of the 

stability valley of nuclei with iron at its lowest point.) Therefore, the core lacks an 

energy source and is unable to support itself against gravity anymore leading to a 

collapse of the star. In a single second the innermost regions are compressed to nuclear 

densities of about 1012 kg/m3 and temperatures of about 1011 K. The iron nuclei, which 

have been synthesized just before in silicon burning are broken up again into protons 

and neutrons through the high-energy thermal radiation. The innermost regions are 

compressed so much that the core density becomes sufficiently high for electrons and 

protons to combine, producing neutrons and neutrinos. As the collapse continues, this 

giant ball of neutrons generally reaches a state of maximum density, and then bounces 

back. The bounce drives an extraordinarily powerful shock wave outwards through the 

outer parts of the star. Investigations within the last three decades have made it clear 

that this prompt shock will not have enough energy to explode the remaining outer 

layers of the star. Only with the additional supply of energy through neutrino heating 

can the shock wave be supported to completely blow apart the star. This powerful 

explosion can explain supernovae of type II, but also of type Ib,c. At the center of the 

supernova explosion, the dense core of neutrons may be left behind as a neutron star. 

Alternatively, if the remaining core becomes heavier than a few solar masses through 
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partial fallback of material, it can even collapse into a black hole. The dual explosion 

mechanism with prompt shock and delayed explosion by neutrinos is still not 

understood well. A proper treatment of the neutrino transport requires detailed 3D 

hydrodynamical simulations which are currently beyond the capability of modern 

computers and thus one has to refrain to approximations whose merits are debatable. 

For an overview, see, e.g., (Janka, et al., 2007). 

The physics of the remaining compact objects after stellar death, e.g., white dwarfs, 

neutron stars and black holes are discussed by Shapiro and Teukolsky (1983). 

 

4.2 Hydrogen burning: proton-proton chain, CNO cycle 

For nuclear reactions to take place in the interiors of stars at least a temperature of 

10 million degrees is necessary. This high temperature is needed because nuclei are 

positively charged and repel each other through the Coulomb potential. The typical 

kinetic energy of nuclei in stellar interior range from between a few keV to a 

few 100 keV being much smaller than the typical height of a few MeV of the Coulomb 

barriers between reaction partners. Therefore, nuclear reactions in stars proceed mainly 

by barrier penetration exploiting the quantum mechanical tunnel effect. The cross 

sections decrease exponentially with the kinetic energies of the nuclei because of the 

decreasing penetration probability through the Coulomb barrier. The dependence on the 

relative kinetic energy E between interacting nuclei can be represented most simply by a 

formula in which a factor proportional to the inverse of the relative kinetic energy 1/E 

and the barrier penetration factor G(E) is factored out from the cross section: 

 (E) = (1/E) G(E) S(E). This leaves a function S(E) called the astrophysical S-factor 

that varies smoothly with the kinetic energy E of the interacting nuclei in the absence of 

resonances. Neutron-induced reactions would not have to overcome the Coulomb 

barrier. However, neutrons are not very abundant in stellar interiors. They still play a 

major role for the nucleosynthesis of heavy nuclei through the so-called s- and r-

processes, to be discussed in Subsection 4.5. 

The reaction rate, expressed as the number of reactions per volume and per time, is 

proportional to the astrophysical S-factor. At the temperatures and densities relevant for 

the stellar environments the interacting nuclei have a Maxwell distribution of speeds. 

This distribution has also to be taken into account when determining the reaction rate. 

An introduction to astrophysical S-factors and reaction rates can be found in many 

textbooks on nuclear astrophysics, e.g. Arnett 1996, Rolfs and Rodney 1988, Iliadis 

2007, Boyd 2008. 

Nuclear burning in late hydrostatic phases (see, e.g., silicon burning) and in different 

explosive scenarios proceeds at high temperatures and densities. This leads to 

equilibrium between forward and reverse reactions, e.g. capture and photodisintegra-

tion. It gives rise to equilibrium abundances depending only on the supply of free 

neutrons and protons and on certain nuclear properties. High temperatures favor the 

creation of light nuclei because the photodisintegration processes dominate. High 

densities lead to heavy nuclei, and intermediate conditions yield the highest abundances 
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for nuclei with high binding energies. Such an equilibrium can be established within a 

group of nuclear species where individual reactions link different groups. This is called 

quasi-statistical equilibrium (QSE). The full nuclear statistical equilibrium (NSE) is 

reached when all nuclei are equilibrated. 

In the following we describe the different burning stages one by one, starting with 

hydrogen burning, being the first burning stage of every star. 

In hydrogen burning, occurring in the cores of main-sequence stars like our Sun, 

ordinary hydrogen nuclei (i.e. protons) are burnt through a chain or cycle of nuclear 

reactions into 4He nuclei. In this stellar plasma there are two processes burning 

hydrogen: the proton-proton chain (pp-chain) (Figure 10) and the CNO-cycle (Figure 

11). 

 

FIGURE 10. The proton-proton chain of hydrogen burning. 

 

The pp-chain proceeds through a sequence of two-body reactions. The first reaction 

in the pp-chain is the exothermic fusion of two protons p into the deuteron d consisting 

of a proton p and a neutron n through the reaction: 

 .ν+e+dp+p +  (2) 

For this reaction to take place a proton p must be converted into a neutron n through 

p  n + e+ + , releasing a positron e+ and a neutrino . Such a conversion can only 

proceed through the weak interaction (see Subsection 3.1). Therefore, the rate of the 

reaction in Eq. (2) is very low, which makes the reaction the bottleneck of the pp-chain. 

Once the deuteron d is formed, it very rapidly undergoes the reaction: 
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 .He3 γ+p+d   (3) 

There are two alternatives for the next step, leading to a branching of the pp-chain 

into the ppI- and ppII-chain. In the ppI-chain, occurring in 86% of the cases, two 3He 

nuclei fuse to a final 4He nucleus while two protons are released: 

 .2pHeHeHe 433 ++   (4) 

In the ppII-chain, occurring in 14% of the cases, a 3He nucleus fuses with a 4He 

nucleus creating a 7Be nucleus and thereby releasing a photon, : 

 .BeHeHe 743 γ++   (5) 

In almost all cases this reaction is followed by the capture of an electron and 

emission of a neutrino  thereby converting a 7Be nucleus into 7Li. This is followed by 

the capture of another proton, creating two 4He nuclei: 

 

.He2Li

LiBe

47

77





p+

,ν+e+  (6) 

Another branching into the ppIII-chain occurs in a very small percentage of cases 

with a total probability of only 0.02%. In this chain, reaction (5) is followed by the 

following sequence of reactions: 

 

.He2Be

Be

Be

48

88

87







,ν+e+B

,γ+Bp+

+

 (7) 

The net reaction of all three pp-chains 

 2ν2eHe4p 4 ++ +  (8) 

leads to a transformation of four protons into a 4He nucleus releasing two positrons e+, 

two neutrinos  and a total energy of 26.73 MeV. A fraction of this energy is carried 

away by the neutrinos, which leave the star practically unhindered due to their 

negligible interaction with the solar material. 



T. Rauscher and A. Patkos 37 

 

Fusion of hydrogen into helium may also be achieved through another sequence 

called CNO-cycle (Figure 11), which is notably different from the pp-chain: 

 .1215

1515

1514

1413

1313

1312

α+Cp+N

,ν+e+NO

,γ+Op+N

,γ+Np+C

,ν+e+CN

,γ+Np+C

+

+













 (9) 

In this sequence the C, N, and O nuclei only act as ‗catalysts‘ and the net reaction of 

the CNO-cycle is again given by Eq. (8). 
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FIGURE 11. The CNO-cycle of hydrogen burning. 

For main-sequence stars lighter than about two solar masses, the pp-chain dominates 

in hydrogen burning, whereas the CNO-cycle is favored over the pp-chain in stars that 

are more than twice as massive as the Sun. 

In our Sun the pp-chain dominates over the CNO-cycle, producing about 98% of the 

total energy. A prerequisite for CNO-cycles is, of course, the existence of the elements 

C, N, O in the stellar plasma. Stars formed early in the Galaxy (first generation stars) 

contain only primordial elements and thus are not able to burn hydrogen through a 

CNO-cycle at all. 

The Sun‘s temperature in the core is about 1.5107 K, whereas the surface 

temperature is only about 5600 K. The Sun has already lived for 4.6 billion years, and 

will have enough hydrogen supply to live for about another 5 billion years. This leads to 

a long lifetime of about 10 billion years before its fuel is exhausted. 
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How can we obtain information from the Sun‘s core, where hydrogen burning takes 

place? The photons reaching us from the Sun are emitted from the solar surface. 

They have changed their energy enormously by many scattering processes on their way 

from the hot solar core to the relatively cool surface of the Sun. Therefore, in the visible 

region only the solar surface and not the solar interior can be observed. One possibility 

to obtain information about the Sun‘s core is helioseismology, i.e., by observing the 

vibration modes of the Sun. It was confirmed through helioseismology that our standard 

solar model is correct (Fiorentini and Ricci 2000, Bahcall et al. 2001a, Christensen-

Dalsgaard 2001). 

Another possibility is to observe the neutrinos that are set free in nuclear reactions of 

the pp-chain and CNO-cycle and reach the surface practically unhindered. Presently 

four neutrino detectors measuring solar neutrinos exist: HOMESTAKE (U.S.A), 

GALLEX (Italy), (SUPER)KAMIOKANDE (Japan) and SNO (Canada). All the above 

neutrino detectors are underground in order to shield out the cosmic rays that would 

give unwanted background signals in the neutrino detectors. The existing solar neutrino 

detectors measure only about 1/3 to 1/2 of the electron neutrino flux compared to the 

value calculated from the standard solar model (Bahcall 2000). This discrepancy is 

called the solar neutrino problem (Bahcall 1989, 1999). Possible problems both with the 

neutrino measurements and with our standard solar model have been ruled out. 

Recently, at SNO it was possible to observe not only the solar electron neutrinos, but 

also the - and -neutrinos in the same experiment (Heger 2001, SNO collaboration 

2002a, SNO collaboration 2002b). The measured total neutrino flux agrees with the 

value expected from the standard solar model. The solution to the solar neutrino 

problem implies some new physics by the introduction of the so-called neutrino 

oscillations (see Subsection 8.2 in Chapter 8, Volume 1). Through such oscillations, the 

electron neutrinos  emitted in the solar core by the nuclear reactions given in 

Eqs. (2), (6) and (7) can change into other types of neutrinos. Thus, mainly -neutrinos 

emerge on their way from the core of the Sun to the detector. Experiments measuring 

electron neutrinos thus show a smaller flux than initially emitted in the solar core 

(Bahcall 2001, Bahcall et al. 2001b, Fiorentini et al. 2001). This physical picture is the 

culmination of about 40 years of solar neutrino detection and research. 

Recently, these findings are combined with the results of the so-called atmospheric 

neutrino anomaly, where -neutrinos generated in pion decays oscillate over into, 

mainly, -neutrinos. Also terrestrial experiments performed with neutrino fluxes 

produced either at nuclear power plants or with accelerators provide substantial 

information on the mixing pattern among the different neutrino species. Searches for 

possible oscillations into further light neutrino flavors, which would be of clear 

cosmological significance, did not provide a clear answer to the question of their 

existence, yet. (See Subsection 8.2 in Chapter 8, Volume 1) 
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4.3 Helium burning: nucleosynthesis of carbon and oxygen 

The fusion of protons into helium continues until the star has exhausted its 

hydrogen. When this happens, the star undergoes a gravitational collapse and the 

temperature rises to about a few times 108 K in the core of the star, which makes the 

fusion of helium into heavier nuclei possible. In the first reaction of helium burning the 

fusion of two 4He nuclei creates the 8Be nucleus. However, the 8Be nucleus has an 

extremely short mean life of only 10−16 s, before it decays back again to two 4He nuclei. 

This process is in equilibrium, where the rate of production equals the rate of 

destruction of the 8Be nucleus: 

 .Be↔HeHe 844 +  (10) 

The 8Be just produced can, however, capture another 4He nucleus creating the 12C 

nucleus through the reaction: 

 .HeBe 1248 γ+C+   (11) 

The reactions (10) and (11) are called the triple-alpha reaction, because three 4He 

nuclei or alpha particles are necessary for the creation of 12C. This reaction can only 

create carbon in appreciable amounts because of the existence of a resonance in 12C at 

the relevant energy for helium burning. Through this resonance the reaction (11) is 

enhanced by many orders of magnitude. 

In helium burning about half of the carbon nuclei produced are converted to oxygen 

nuclei 16O by the capture of another 4He nucleus: 

 .He 16412 γ+O+C   (12) 

Further captures of helium nuclei 4He by oxygen nuclei 16O occur only to a much 

lesser extent and therefore helium burning comes to an end after the creation of 12C 

and 16O. 

Carbon and oxygen are the two most important elements for carbon-based life. 

Carbon is needed for the complex nuclei of the DNA and proteins, whereas oxygen is 

needed even for water. Interestingly enough, these two elements are extremely fine-

tuned with respect to the nuclear force. If the strength of this force were 0.5% larger or 

smaller, the average abundance of carbon or oxygen in our Universe would be reduced 

by more than two orders of magnitude. This would make the existence of carbon-based 

life in our Universe very improbable (Oberhummer et al. 2000; Schlattl et al. 2004). 

Outside the stellar core burning helium, hydrogen burning continues in a shell 

around the core. If the initial mass of a star is less than about 8 solar masses no more 

burning phases will take place after helium burning and nuclear burning stops. A white 
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dwarf with a surrounding expanding planetary nebula will be the endpoint of the star‘s 

life. Charbonnel et al. (1999) and Marigo (2000) review the chemical yields in light and 

intermediate-mass stars between 0.8 and 8 solar masses. 

Two interesting effects happen in helium burning of low mass stars. Firstly, stars 

with less than about 2 solar masses undergo a core He flash instead of igniting stable 

He burning after the H burning phase. This is because the cores of lower mass stars are 

more dense than those of higher mass stars. For stars with less than about 2 solar 

masses, the contracted He core is so dense that it cannot be described as an ideal gas. 

Rather, it is a degenerate gas, in which pressure is only depending on density but not on 

temperature. Once the triple- reaction, being very efficient at high density, is ignited, a 

thermonuclear runaway ensues because the rising temperature does not rise the pressure 

and therefore does not cause an expansion of the burning zone. Thus, the usual 

selfregulation mechanism of hydrostatic burning is not working anymore and He 

burning proceeds quickly to high temperature. Very high temperatures lift the 

degeneracy of the gas and its equation-of-state becomes temperature dependent again 

very suddenly. This causes an explosive expansion of the outer core, also ejecting the 

outer layers of the star as a planetary nebula. 

The second phenomenon occurs in stars between 2 and 8 solar masses, the so-called 

Asymptotic Giant Branch (AGB) stars. Regular He burning takes place in the core of 

these stars in their red giant phase. With the exhaustion of He in the center of the star, 

the burning zone moves outward and becomes a burning shell. Thus, there are two 

shells burning, a H-burning shell and a He-burning shell. The He-burning shell is very 

thin and does not generate sufficient energy to balance the mass layers on top of it 

through radiation pressure. This squashes the shell more and more. Because of the non-

linear dependence on density of the triple- rate, which is actually two reactions one 

after another, the energy release will considerably increase but still not be enough to 

expand and selfregulate the shell against the pressure from the surrounding layers. 

Further contraction enhances the triple- rate nonlinearly and so on. Although the gas is 

not degenerate, a similar thermonuclear runaway as in the degenerate case occurs. 

When a critical temperature is reached, enough energy is released to explosively expand 

the shell against its surroundings. This rapid expansion, the He-shell flash, is so strong 

that it also blows out the H-burning shell. Due to the expansion, the density drops and 

the triple- reaction ceases. Quickly, the star contracts again, the outer material settles, 

and first the H-burning and then the He-burning shell is ignited again. This sets the 

stage for another such cycle. AGB stars undergo a large number of such pulses, where 

the thermonuclear runaway phase with the flash lasts only a few hundred years whereas 

the time between pulses is a hundred to a thousand times longer. Oscillations and 

vibrations are induced into the stellar plasma by these pulses, leading to increased mass 

loss from the surface of the star. AGB stars have strong stellar winds which 

considerably decreases their total mass during their evolution. The shell flashes have 

another important impact: they cause large convection zones, mixing the plasma 

constituents across large distances within the star. This is important for the production 

of the s-process nuclei (see Section 4.5.1). 
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He-shell flashes only occur in low-mass stars because they are caused by thin He-

burning shells and the size of the shells scale with the stellar mass. 

 

4.4 Advanced burning stages 

In a massive star with more than 8 solar masses, the next stage after helium burning 

is carbon burning. This starts when the carbon/oxygen core has shrunk so that the 

temperature at its center has reached about 5108 K. Then two carbon nuclei fuse 

together creating 20Ne or 23Na nuclei: 
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The next stage is neon burning starting at 109 K, in which photons first disintegrate 
20Ne and liberate 4He, which in turn reacts with the undissociated 20Ne to build up 24Mg 

and further nuclei: 
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Oxygen burning occurs when the temperature reaches 2109 K, the most important 

reaction being the one producing 28Si: 

 .HeSi 4281616 +O+O   (15) 

The final stage is reached at a temperature of 5109 K, when silicon burning begins. 

At this high temperature a series of reactions takes place beginning with the 

photodisintegration of 28Si: 

 .HeMgSi 42428 +γ+   (16) 
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Then the released 4He nuclei build up heavier nuclei by successive capture reactions: 
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and so on. At such high temperatures capture and photodisintegration reactions are in 

equilibrium. In this so-called nuclear statistical equilibrium (NSE) the knowledge of 

individual reactions or reaction rates is not important anymore to calculate the 

abundances. The produced abundances only depend on the temperature and density of 

the plasma and the nuclear binding energies (Iliadis 2007, Boyd 2008). The result of 

this series of photodisintegration and capture reactions is the steady build-up of heavier 

elements up to the elements grouped around iron (Hix and Thielemann 1998), with 56Ni 

preferentially produced because it is the nucleus with the highest binding energy and 

having equal number of protons and neutrons. 

The sequence of stellar burning is terminated when the core of the star is largely 

composed of elements in the mass region of nickel and iron, because no more energy is 

to be gained from further nuclear reactions. As soon as the energy produced is not 

enough to maintain the hydrostatic equilibrium, the core cannot support the outer layers 

anymore and it begins to collapse due to its gravitation, leading to a core-collapse 

supernova (see Subsection 4.1.3). 

In a core-collapse supernova explosive nucleosynthesis also takes place through the 

outward proceeding shock wave (Thielemann et al. 2001a), modifying the elemental 

abundance pattern of the outer layers of the pre-supernova star. This explosive burning 

of the C-, Ne-, O- and Si-layers in the star mainly leads to modifications of the 

abundances in the region from Ca to Fe (Rauscher et al. 2002). Photodisintegration of 

heavy nuclei also leads to the production of proton-rich stable nuclides, the so-called p-

nuclides (see also Subsection 4.5.2). The strong neutrino emission caused by the 

formation of a neutron star in the core collapse influences nucleosynthesis in the 

deepest, barely ejected layers of the star as well as in the outer layers (Sections 4.5.2 

and 4.5.3). 

Nucleosynthesis of massive stars is reviewed by Rauscher et al. (2002), Woosley 

and Heger (2007). An overview of stellar nucleosynthesis including hydrogen, helium, 

neon, silicon, and explosive burning as well as the basics of the s- and r-process are 

given by Rauscher and Thielemann (2001). Explosive burning and the s- and r-

processes are also introduced below. 
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4.5 Nucleosynthesis beyond Fe 

As we have seen in the preceding sections, stellar burning phases only lead to the 

production of nuclei up to Fe. A review by National Research Council of the National 

Academies identified 11 key questions to be addressed in science in the next decade 

(Turner et al. 2003). Ranked 3 on the list is ―How were the elements from Fe to U 

made?‖ Although the ground to answer this question has been laid by Burbidge et al. 

(1957), Cameron (1957) and much progress has been made since then, there remain a 

number of problems regarding the astrophysical sites of certain nucleosynthesis 

processes and also concerning the properties of certain, highly unstable nuclei in such 

processes. In the following sections we give a brief summary of the current knowledge 

of how elements beyond Fe were synthesized. 

 

4.5.1 The main and weak s-process components 
Due to the lack of a Coulomb barrier, the most likely process for the formation of 

elements heavier than those grouped around iron is neutron capture. If a supply of 

neutrons is available, they can accrete by sequential neutron captures on a ‗seed 

nucleus‘ in the region of iron to build up neutron-richer nuclei. As the neutron number 

of the nucleus increases, it will become unstable to − decay, transforming a neutron 

into a proton in the nucleus and emitting an electron and an antineutrino. Successive 

neutron captures, interspersed by − decays build up many, but not all of the heavier 

stable nuclei.  

There are two basic time scales in this scenario of heavy-element nucleosynthesis by 

neutron captures: (1) the beta-decay lifetimes, and (2) the time intervals between 

successive captures that are inversely proportional to the neutron capture reaction rates 

and the neutron flux. If the rate of neutron capture is slow compared to the relevant 

 decays, the synthesis path will follow the bottom of the stability valley very closely. 

On the other hand, if the rate of neutron capture is faster than the relevant − decays, 

highly neutron-rich nuclei will be formed. After the neutron flux has ceased, those 

nuclei will be transformed to stable nuclei by a series of − decays. The above two 

processes are called s- and r-process, respectively, according to their slow or rapid rate 

of neutron capture. The observed abundances of nuclei in the solar system, especially in 

the regions of closed-shell nuclei, suggest that the s- and r-processes contributed more 

or less equally to the formation of the elements above the iron region (see Figure 12). 
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FIGURE 12. Contribution of s- and r-process to the solar abundances of the isobars for heavy elements 

(p-isotopes cannot be seen in this figure because of their very small abundances). Solar system abundances are 

measured (Anders and Grevesse 1989), s- and r-abundances are calculated. The peaks in the solar abundances 

around mass numbers A = 88, 138, 208 are formed in the s-process, whereas the broader companion peaks 

shifted to slightly lower mass number are r-process peaks. 

Two important reactions provide neutrons for the s-process: 
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
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The reaction on 13C is much more efficient in releasing neutrons because it is 

strongly exothermic, contrary to the second reaction. However, 13C normally does not 

occur in He-burning zones whereas 22Ne does. This proved to be a longstanding 

problem in complete stellar simulations of s-process nucleosynthesis. 

Early observations (see Burbidge et al., 1957) had already found Tc on the surface 

of AGB stars. Since Tc isotopes are short-lived compared to the age of such a star, they 

had to be produced in that star and brought up to the surface. Only in recent years, 

sophisticated stellar models were able to follow the complicated convection and 

nucleosynthesis processes inside AGB stars with sufficient accuracy to confirm them as 
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the production sites. He-shell flashes (see Section 4.3) and the mixing brought about by 

them turned out to be the key (Busso et al 2001, Boothroyd 2006). Such a flash can mix 

down protons from the unburnt outer layer of the star which can then be used to produce 
13

C by proton capture on 
12

C and subsequent -decay of the resulting 
13

N. With this 
13

C 

neutrons can be very sufficiently released even during the interpulse phase. 

Additionally, the reaction on 22Ne can release further neutrons during the high 

temperature phase of the flash itself. Thus, the nuclides in the stellar plasma are 

irradiated with neutrons in bursts over millennia. The large convection zones appearing 

in the flash phase bring up the newly synthesized material to the surface. 

In the manner described above, AGB stars produce the majority of the s-process 

nuclei, the so-called main component. It was known for a long time that there must be a 

second site of s-processing, producing light s-nuclei. Because they exhibit smaller 

abundances than those of the main component, this was called the weak component. 

Such a weak s-process is found in massive stars (i.e. stars with more than 8 solar 

masses), where capture of 4He by 22Ne is the main neutron source. Massive stars reach 

higher temperatures than AGB stars already in their late evolution stages which releases 

neutrons. Even more can be released during explosive burning, when the temperature 

rises due to the supernova shock wave passing through the outer layers of the star. 

Because of the inefficiency of the 22Ne neutron release and the short timescale, one 

cannot proceed much beyond Fe by this mechanism in massive stars. 

For nucleosynthesis of the heavy elements through the s-process in both AGB and 

massive stars, there already must be nuclei present in the iron region, which were 

produced in previous generations of stars. Thus, the s-process will be stronger in stars 

formed more recently than in older stars containing less heavy elements. 

 

4.5.2 Explosive nucleosynthesis in the outer layers of a massive star 
Since the build-up of nuclei in the s- (and r-) process follows the neutron-rich side of 

the stability valley (editors‘ note: see, e.g., Figure 13 in Chapter 5, Volume 1), 32 

proton-rich isotopes cannot be produced in either process. These so-called p-nuclides 

occur naturally but with abundances many orders of magnitude lower than the other 

nuclides. The hypothetical process synthesizing these nuclides was termed p-process 

and several models have been suggested. The commonly favored one is 

photodisintegration of pre-existing nuclei in the Ne/O shells of massive stars. When a 

supernova shockfront is passing through these layers, the high temperatures of 2-4 GK 

enable photodisintegrations, starting by -induced emission of several neutrons, leading 

to proton-rich nuclei. The photodisintegration path can branch when proton or  

emission becomes more favorable than neutron emission in such proton-rich nuclei. The 

bulk of p-nuclides can be explained in such a model but some problems remain 

(Rauscher et al. 2002, Arnould and Goriely 2003, Boyd 2008). Especially the 

production of the light p-isotopes, in particular 92,94Mo and 96,98Ru, is not understood. 

Among the p-nuclei they have the by far highest abundance but cannot be made 

concurrently with the others. It remains an open question whether the stellar models 
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have to be revised or an additional production mechanism has to be invoked for these 

light p-nuclei. 

The neutrino flux of a core-collapse supernova is high enough to contribute to the 

nucleosynthesis of certain rare elements and isotopes, even in the outer layers of the 

star. In this so-called -process, inelastic scattering of a neutrino leads to formation of 

an excited daughter nuclide, which then decays by particle emission. This process can 

contribute significantly to the production of light (11B, 19F) and heavy (138La, 180Ta) 

isotopes (Woosley and Weaver 1995, Heger et al. 2005). 

 

4.5.3 Explosive burning in the deep layers of a massive star 
In addition to s-process nucleosynthesis, about half of the nuclides beyond Fe are 

produced through rapid neutron captures on short timescales in the r-process. The site of 

the r-process is controversial. Mostly favored are core-collapse supernovae where 

appropriate r-process conditions are thought to be found close to the region of neutron 

star formation. These innermost layers, which are barely ejected, move outwards within 

a strong neutrino flux, driving the material to become very neutron rich. With a high 

neutron density, neutron captures can proceed much faster than -decays and produce 

very neutron-rich nuclei far from stability. Through simultaneously occurring captures, 

photodisintegrations with neutron emission, and -decays heavier elements are 

synthesized within a few seconds. When the ejected material cools down, those highly 

unstable nuclei decay back to stability, thus supplying the needed fraction of heavy 

elements. While the s-process is confined to the region up to Bi, the r-process is thought 

to also reach the region of fissionable nuclei and produce natural, longlived elements 

such as U. The endpoint of the r-process path is highly debated since it depends on 

fission barriers of very neutron-rich, heavy nuclei, for which there is no consensus 

among theoretical models, yet. 

The conditions in those innermost regions of a core-collapse supernova are closely 

linked to the working of the explosion mechanism. Since the latter is not yet fully 

understood, it is not yet clear whether the required conditions can actually be 

established. Therefore, a number of alternative scenarios is still discussed, such as jet 

outflows from asymmetrically exploding stars. The search for the site of the r-process 

remains a major focus of research.  

Recently, an additional nucleosynthesis process in the deep layers of the exploding 

star has been suggested (Fröhlich et al. 2006). It was discovered that the combined flux 

of neutrinos and antineutrinos from the emerging, hot neutron star initially creates very 

proton-rich conditions before the matter becomes neutron-rich at later times and/or 

larger radii. The high temperature and density environment gives rise to rapid proton 

captures, thus synthesizing nuclei beyond Fe but on the proton-rich side of stability. A 

small number of neutrons is required to speed up the matter flow to heavier elements 

and these are produced by antineutrino captures on protons. . The p-process could 

perhaps explain the surprisingly high abundance of Sr, Y, Zr found in very old stars 

(Travaglio et al, 2004; Frebel et al, 2005). Again, the details of this so-called p-process 

and how efficient it can produce elements beyond Fe depends strongly on the conditions 

in the deep layers of the exploding star and the explosion mechanism. Among the 
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suggested alternative scenarios are wind outflows from the accretion disks around black 

holes formed by core collapse of very massive stars (Surman et al. 2006). These are also 

thought to be the cause of so-called -ray bursts which are the most energetic 

phenomena observed in our Universe today (MacFadyan and Woosley 1999; Mészáros 

2006). 

 

4.6 Nucleosynthesis by spallation 

The light and fragile elements lithium, beryllium, and boron (LiBeB) are not 

primarily produced in primordial or stellar nucleosynthesis. In fact, the abundance curve 

in Figure 13 shows a huge dip (almost a gap, actually) for the mass numbers 8-11, 

reflecting the scarcity of LiBeB-nuclei in the solar system. Only the nuclide 7Li can be 

produced both in primordial (see Subsection 3) and in stellar nucleosynthesis (see 

Subsection 4.2), whereas the isotopes 6Li, 9Be, 10B and 11B are almost pure spallation 

products of heavier elements. 

 

FIGURE 13. Relative solar abundances by mass number. Data are from Anders and Grevesse 1989. 

The abundances are arbitrarily renormalized to yield a value of 10
6
 for silicon. 

The high-energetic Galactic Cosmic Rays (GCRs) originate probably from super-

novae (Erlykin and Wolfendale 2001). GCRs consist mainly of fast-moving bare 

hydrogen and helium nuclei and, to a lesser amount, of carbon, nitrogen and oxygen 
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nuclei (CNO) nuclei. Hydrogen and helium nuclei of interstellar clouds can spall the 

CNO-nuclei in flight of the fast GCRs. Therefore, the GCRs are by about a million 

times enriched in LiBeB-nuclei compared to the solar system abundance. 

The most plausible origin of the main bulk of LiBeB-nuclei is that hydrogen and 

helium nuclei of GCRs hit and spall CNO-nuclei contained in interstellar clouds. 

However, this process alone seems unable to produce LiBeB at the observed level. 

Therefore another production site of LiBeB-nuclei has been proposed. This invokes in-

flight fragmentation of carbon and oxygen nuclei by collision with hydrogen and helium 

nuclei in interstellar clouds. The sites of this process are mainly the surroundings of 

massive stars, which are able to furnish freshly synthesized carbon and oxygen nuclei 

and accelerate them via shock waves. Finally, spallation through neutrinos in supernova 

explosions also produces the nuclides 7Li and 11B (Hartmann et al. 1999). 

A review of nucleosynthesis by spallation is given by Vangioni-Flam et al. (2000). 

5 NUCLEOSYNTHESIS IN BINARY STAR SYSTEMS 

5.1 General considerations 

Observations reveal that more than half of the known stars are associated in binary 

or multiple systems. In many such systems, the stars are so well separated that there is 

negligible influence on each other‘s evolution. However, when the constituents of such 

a system are close, a range of interesting physical phenomena can ensue. Mass can be 

transferred from one star to the other when the donating star becomes so large that its 

atmosphere extends beyond the limiting region where the gravitational attraction of the 

two stars is equal. Material is then escaping from the gravitational well of the donor and 

flowing into the attractive field of the other object. It can be shown that there is a single 

point of gravitational equilibrium between the two objects, through which the mass 

transfer will occur. The volume around a star enclosed by the equipotential surface 

containing this point is called the Roche lobe. A star can fill or exceed its Roche lobe 

when it either increases its radius in the normal course of evolution (e.g. by becoming a 

Red Giant), or when the orbital separation of the two objects is decreasing due to the 

emission of gravitational waves. The latter situation corresponds to shrinking their 

respective Roche lobes. The inflow onto the surface of the companion can alter its 

surface properties, which is manifested, for instance, in the observed spectra. 

The further evolution might even lead to powerful explosions. A broad review of such 

phenomena is given by Warner (1995). 

From the point of view of nucleosynthesis, explosive burning in such binary systems 

proves to be especially important as nuclides created in such an environment can be 

injected into the interstellar medium by the explosion. Furthermore, the nucleosynthetic 

signature will be different from stellar hydrostatic and explosive scenarios due to the 

different initial and burning conditions. Thus, different isotopic ratios can be obtained 

and, in some cases, it is possible to synthesize nuclides not accessible in other sites. In 
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the following, we therefore focus on outlining only such scenarios which might have an 

impact on the abundances of elements observed in our Galaxy and the Universe. It has 

to be emphasized, however, that it is not yet possible to model all details of the 

explosive processes, due to the complexity of a multi-dimensional hydrodynamic 

problem including scales differing by many orders of magnitude. The problems are 

similar to those occurring in core-collapse supernova models. In scenarios where 

neutron stars are involved, additional uncertainties in the nuclear equation of state enter. 

As a result, a detailed, quantitative understanding of some of the processes is still 

lacking. Nevertheless, the basic features of all the processes can be described 

qualitatively in simplified models. 

 

5.2 Novae 

Historically, the Nova phenomenon is one of the oldest observed. Already astrono-

mers of ancient civilizations were aware of sudden appearances of bright stars in the 

sky, at a position where no star had been observed before. This was termed ‗nova‘ as in 

‗new star‘. Modern astronomy was able to identify nova progenitors. These are faint 

stars (mostly undetectable by the naked eye) which suddenly increase their brightness 

by several stellar magnitudes (i.e. their energy output increases by a factor of 

100 - 100 000) within a few days. The star returns to its initial brightness after several 

months. In rare cases the same star experiences another nova outburst within several 

years. This is called a recurring nova. In general, classical novae reappear only every 

100 to 10 000 years. 

The modern explanation of the Nova phenomenon invokes a binary system with a 

regular star in its early burning phases and a white dwarf (Fujimoto 1982, Truran 1984, 

Gehrz et al. 1998, Starrfield 1999). The latter is too faint to be directly observed. Such a 

system can have originated from two low-mass stars, one of them slightly more massive 

than the other. More massive stars evolve faster and thus the heavier star already 

underwent its complete stellar evolution and left a white dwarf as a remnant, while the 

other star has not yet even completed its early phases. From the atmosphere of the main 

sequence or red giant star hydrogen-rich material is flowing across the Roche surface. 

It is captured by the gravitation of the white dwarf and forms an accretion disk around 

it. Subsequently, the gas is accreted on the surface of the companion, forming a thin 

layer. Close to the surface the gas becomes degenerate, delaying the onset of hydrogen 

burning. As soon as the necessary density and temperature is reached, hydrogen burning 

ignites explosively, pushing outwards and ejecting part of the outer accreted layer. 

With the sudden expansion, temperature and density are dropping again and the burning 

ceases. It can reoccur as soon as a sufficient amount of new material has been accreted 

which usually takes several thousand years at typical accretion rates of less than 

1 Earth mass per 10 years. 

In terms of nucleosynthesis it should be obvious that nova ejecta are mainly 

hydrogen and that they more or less retain the surface composition of the accompanying 

star. However, it was found observationally that they are also strongly enriched in C, N, 
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and O. This has been a puzzle for over two decades (Rosner et al. 2001). In the 

thermonuclear runaway triggered by hydrogen ignition the main reaction sequences are 

those of the CNO-cycles. However, they can account neither for the observed 

enrichment nor for the energy production required for a fast nova burst. Currently, it is 

thought that material from the surface of the white dwarf might be dredged up and 

efficiently mixed into the burning layer and the outer zones. This would increase the 

CNO energy production and also provide a mechanism for the enrichment. However, to 

date one-dimensional and multi-dimensional simulations have not been able to account 

for the observations (Starrfield et al. 2000, Kercek et al. 1999). Nevertheless, it seems 

that novae are ‗digging up the ashes‘ of previous stars and distributing them throughout 

the Galaxy. They are considered to be the major sources of 15N, 17O, and 13C, and to 

have minor contributions to a number of additional species, mainly 7Li and 26Al. For 

current reviews on the nucleosynthetic contribution of novae, see Jordi and Hernanz 

(2007), Jordi and Hernanz (2008) 

 

5.3 Type Ia supernovae 

Given a binary system consisting of a white dwarf and a companion star as in the 

nova case, the accretion rate on the surface of the white dwarf is essential for the further 

development. Low accretion rates lead to a nova as described above. When the 

accretion rate exceeds about 10−8 solar masses per year, hydrogen can be quiescently 

burned during accretion and the burning products will sediment on the surface of the 

white dwarf, forming a He layer. The details on the further fate of the object are 

complicated and have not been fully simulated yet. Basically two ways of explosion can 

be envisioned. In the first, the ignition of the He layer leads to a thermonuclear 

runaway, this time mainly burning via the triple- reaction, not depending on CNO 

elements, contrary to novae. Nevertheless, the resulting explosion would lead to an 

expulsion of the outer layers, like in a nova, only much more powerful. The second type 

of explosion occurs when the accretion rate is even higher, about 10−6 solar masses per 

year. The energy released by the accretion and by burning layers heats the C/O core of 

the white dwarf sufficiently to ignite core C burning. This is followed by a complete 

disruption of the white dwarf because the nuclear energy exceeds the gravitational 

binding energy (Leibundgut 2001a,b). 

The latter is the currently most widely accepted scenario explaining SN Ia (Nomoto 

et al. 1984, Hillebrandt and Niemeyer 2000). It is encouraging that observations can 

confirm also the basic nucleosynthesis features expected. In each explosive event a 

quantity of material of the order of 0.6 - 0.8 solar masses is produced in the 56Ni region, 

which later decays to its stable isobars. Thus, the larger part of the Fe found in the Solar 

System stems from SN Ia. In addition, some intermediate elements like Mg, Si, S, Ca 

are also produced. 

The details of the shockwave propagation and explosive burning are not fully 

understood yet. However, the total energy production remains robust due to the fact that 

the initial white dwarf mass is always close to the Chandrasekhar limit of 1.4 solar 

masses. This fact, in combination with the observational evidence that there are no 
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compact central objects (i.e. neutron stars) found in SN Ia remnants, puts a strong 

constraint on the achieved explosion energy. This is why SN Ia are thought to be 

excellent standard candles with very low variation in the effective energy output 

(Dominguez et al. 2001, Leibundgut 2001a,b). SN Ia as standard candles are important 

tools to measure astronomical distances although there is no firm theoretical grounding 

of the Philips relation (see subsection 2.1.4), yet.  

 

 

5.4 X-ray bursts and the rp-process 

Bursts have been observed not only in the optically visible frequency range of light. 

Powerful, brief bursts of X-rays are also observed throughout the Galaxy. A binary 

system is suggested to be responsible for one subclass of these bursts. Their duration is 

from several seconds up to minutes and they show a fast rise and a slowly decaying tail. 

In the assumed scenario, a main-sequence star and a neutron star are orbiting the 

common center-of-mass. As in the nova and SN Ia case, material is flowing from the 

atmosphere of the companion star and is accreted on the surface of the compact object. 

Due to the increased gravitational field of the neutron star in comparison with a white 

dwarf, the thermonuclear runaway after ignition of hydrogen burning can proceed 

differently from the one in novae and supernovae (Taam et al. 1996, Schatz et al. 1998, 

Wiescher and Schatz 2000, Boyd 2008). Hydrogen and subsequently also helium, burn 

explosively at higher temperatures as before. First, the so-called hot CNO-cycle (also 

found in certain massive stars) is established, followed by further CNO-type cycles 

beyond Ne. The energy production from these cycles leads to a break-out to further 

CNO-type cycles beyond Ne at temperatures surpassing 4108 K. The additional cycles 

generate additional energy, further increasing the temperature. In the next stage of the 

ignition process He is also burned in the triple- reaction. The CNO-type cycles break 

up towards more proton-rich nuclides by (,p) and (p,) reactions. 

Finally, the rp-process (rapid proton capture) sets in. In the rp-process, similar to the 

r-process for neutrons, proton captures and photodisintegrations are in equilibrium. 

Thus, the abundances within an isotonic chain are only determined by temperature, 

density and the proton separation energy of a nucleus. The time scales of flows from 

one chain into the next are given by beta-decay half-lives. The reaction path basically 

follows the proton dripline. The processing of matter is hampered at nuclides with long 

half-lives, the so-called waiting points, which determine the processing time-scales. A 

final endpoint of the rp-process path was found in a closed reaction cycle in the Sn-Sb-

Te region, due to increasing instability against  decay of heavy proton-rich nuclides 

(Schatz et al. 2001). 

Time-dependent calculations showed that the structure of type I X-ray bursts can be 

explained by the energy generation of the proposed processes. Regarding 

nucleosynthesis, it is being discussed whether a fraction of or all light p-nuclei (see 

Section 4.5.2) originate from X-ray bursters. Since the rp-process synthesizes very 

proton-rich nuclei, they would decay to p-nuclei after the burning ceased. Since it 
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proved to be problematic to synthesize the light p-nuclei with mass numbers A<110 in 

the -process by photodisintegration (Section 4.5.2), the rp-process provides a 

compelling alternative to such models, especially after the discovery of its endpoint, 

preventing the production of nuclides with mass numbers A > 110. Although it was 

shown that the isotopes in question can be produced in large quantities, it is still 

speculative whether any of the material is ejected. There could be a very small fraction 

of material lost from the outer atmosphere of the accreted layer on the neutron star 

surface but the rp-process burning takes place further down. Therefore, some 

convection has to be invoked to bring the freshly produced nuclei to the outer layers. 

Comparatively small amounts of ejecta would be sufficient to explain solar p-

abundances but detailed hydrodynamic studies of the burning, convection, and possible 

ejection are still needed. 

 

5.5 Neutron star mergers 

Another interesting binary system is that of two neutron stars. Such systems are 

known to exist; four have been detected by now. They can be created when two massive 

stars complete their stellar evolution and both explode in a core-collapse supernova, 

each leaving a neutron star behind. In such a configuration, the system loses angular 

momentum by emission of gravitational radiation (Taylor 1994) and the two neutron 

stars spiral inwards. At time-scales of 108 y or less, the objects collide at their center-of-

mass. Such a merger can lead to the ejection of neutron-rich material (Rosswog et al. 

1999, Ruffert and Janka 2001). Since this material is even more neutron-rich than the 

deep, high-entropy layers thought to be a possible site of the r-process in core-collapse 

supernovae, nucleosynthesis in decompressed neutron star matter could be a viable 

alternative site for the r-process (Freiburghaus et al. 1999). Detailed hydrodynamic 

calculations coupled to a complete r-process reaction network have not been undertaken 

yet, but parameterized r-process studies indicate the possibility that such mergers could 

even account for all heavy r-process matter in the Galaxy. However, detailed Galactic 

Chemical Evolution models (Argast et al. 2004) show that neutron star mergers, 

occurring at late time in the life of a galaxy, cannot account for the r-process nuclei 

found in very old stars (Sneden et al. 2000, Cayrel et al. 2001, Frebel et al. 2005). 

Therefore, there may be several sites producing r-process nuclei, perhaps similar to the 

two components of the s-process (but occurring in different sites than the s-process, of 

course). 
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6 THE ABUNDANCE OF ELEMENTS IN THE UNIVERSE 

6.1 Experiments and observations 

The essence of every science is the ability to validate theories by comparison to 

experiments. The ability to perform guided experiments is somewhat limited in 

astrophysics because of the large scales and extreme conditions involved. Nevertheless 

there is a wealth of data to be exploited. Atomic transitions and certain nuclear reactions 

(Käppeler et al. 1998) can be studied in the laboratory with current methods. 

Since the s-process (Section 4.5.1) involves mainly stable nuclei, an important 

experimental contribution is the one studying neutron capture at low energy. Special 

focus is put on reactions at s-process branchings. For the majority of unstable nuclei 

reached through the s-process, -decays are much faster than the neutron captures. At 

several places in the nuclear chart, however, the s-process path encounters long-lived 

nuclei for which the decay rate becomes comparable to the neutron capture rate. This 

leads to a splitting of the path: a fraction of the s-process flow proceeds through neutron 

capture, the other through the decay, bypassing certain isotopes. A comparison of 

abundances of nuclei reached through one or the other branch provides information on 

the relation between decay and capture rate. Due to the different temperature 

dependence of capture and decay, the branching ratio is dependent on temperature, 

becoming a sensitive s-process ―thermometer‖. The capture rate also depends on the 

neutron density and thus such a branching can also be used as neutron pycnometer. This 

yields detailed information on the conditions inside an AGB star. To be useful, the 

neutron capture cross sections have to be known with an accuracy of better than 1% 

below about 50 keV neutron energy. This has been achieved for some target nuclei but 

remains a challenge for others. High-resolution time-of-flight experiments are most 

promising to give the required accuracy and provide cross sections within the required 

energy range. The cross sections have to be converted to reaction rates to be applied in 

astrophysical models. The Karlsruhe group (Käppeler et al. 1989) has had a leading  

role in directly determining rates by using a neutron spectrum created by the 7Li(p,n)7Be 

reaction. Through this trick, the resulting energy distribution of the released neutrons is 

very similar to the one of neutrons in a stellar plasma with thermal energy of 25 keV, 

coinciding with s-process conditions. The limitation of this technique is that it can only 

provide the spectrum at this energy. 

The predictions of reaction models giving cross sections relevant for the production 

of p-nuclei and of the nuclear properties required in such calculations can also be tested 

by using neutron and charged particle reactions on stable targets (Descouvemont and 

Rauscher 2006). Some of the accessible reactions are directly important in the 

nucleosynthetic processes while other experiments only fare as tests of the theoretical 

approaches (Kiss et al. 2008). The reactions can either be studied in online beam 

experiments detecting directly emitted -rays or particles. Another important type of 

experiment is that of activation (see, e.g., Gyürky et al. 2006, and references therein). A 

material sample is activated by neutron, proton, or  beams at the energy of interest and 



T. Rauscher and A. Patkos 55 

 

the long-term radiation is counted over an extended period of time. Alternatively, the 

amount of the nuclei produced by the activation can be measured by the very sensitive 

Accelerator Mass Spectrometry (AMS), which has become an important tool also for 

astrophysical measurements. It is especially well suited for treating neutron-induced 

reactions producing different isotopes of the same element. 

The advent of radioactive ion beam (RIB) facilities in nuclear physics allows the 

study of the properties of and reactions with unstable nuclei (Käppeler et al. 1998, 

Thielemann et al. 2001b, Rauscher and Thielemann 2001). In addition to the few, 

already existing, smaller RIB facilities in Europe, Japan and the USA, one large-scale 

facility is under construction at GSI Darmstadt, Germany, and another large-scale 

facility has recently been funded in the USA, the Facility for Rare Isotope Beams 

(FRIB) at Michigan State University. Both the GSI FAIR (Facility for Antiproton and 

Ion Research) and FRIB will allow the production of highly unstable nuclides, both on 

the proton- and neutron-rich side of the chart of nuclides. For the first time, this will 

enable us to study nuclear properties of the p- and rp-processes directly, and also close 

to the r-process path. These investigations will largely improve the understanding of 

explosive nucleosynthetic processes. 

Plasma physics experiments describe the properties of hot and thin plasmas. 

Utilizing data from laser-induced plasmas or nuclear testing allows drawing conclusions 

on the behavior of matter under conditions which are to a certain extent close to those 

found in stellar environments. Hydrodynamic simulations can also be validated against 

test cases drawn from experiments and terrestrial experience. However, large nuclear 

reaction networks involving highly unstable nuclei, extended stellar atmospheres with 

complicated mixing processes, or macroscopic amounts of matter at and beyond nuclear 

densities are only accessible by theoretical methods. The models have then to be tested 

against what we ultimately want to explain: astronomical data. The latter have almost 

exclusively been in the form of observations in the electromagnetic spectrum, starting 

from the ancient observations of visible light coming from the Sun and the stars, to 

modern satellite observatories also exploring other frequency ranges and studying 

emissions of compact objects, faint galaxies, accretion disks, quasars, and the echo of 

the Big Bang, the cosmic microwave background. It is amazing how much has already 

been learned about the structure and history of the whole Universe by just examining 

the faint light reaching the surface of our tiny planet. The upcoming new missions of 

ground- and space-based observatories guarantee an increasing inflow of data, securing 

the development of the related fields and ensuring that this research field stays exciting 

and is still able to provide new insights. 

In addition to the observation in the electromagnetic spectrum, other means of 

obtaining astrophysically relevant information become increasingly important. Among 

those are measurements of cosmic rays, on the surface and in the atmosphere of Earth, 

as well as in low-earth orbits (Westphal et al. 1998, 2001). Such investigations provide 

insights regarding the particle flux in our solar system, originating from the Sun and 

from Galactic sources. In the future, we will be able to study another type of radiation in 

addition to the electromagnetic one: gravitational waves emitted, e.g., by neutron star 

mergers, black hole formation, and other interactions between highly massive or 
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relativistic objects (Sathyaprakash and Schutz 2009). Even more important for studying 

nucleosynthesis and stellar evolution are the isotopic ratios found in certain meteoritic 

inclusions (Lugmair et al. 1983, Lewis et al. 1987, Hoppe and Zinner 2000). Using 

advanced chemical extraction methods, these data can be utilized to deduce the 

composition of the material in the early Solar System. Because of its growing 

importance for nucleosynthesis studies, the field is introduced in the separate Section 

6.3. 

 

6.2 Solar abundances 

As might have become evident from the previous sections, the origin of the elements 

can only be understood in detail when also the physics of the nucleosynthesis sites is 

understood. Complete simulations of nucleosynthetic events are required which account 

for all data, not just those giving details of elemental or isotopic abundances. Neverthe-

less, the determination of abundances remains central if one wants to study nucleo-

synthesis. 

By inspection of the absorption lines in stellar spectra it is possible to measure the 

contents of the stellar atmosphere. A theoretical model has to explain how many of 

those nuclides were inherited from the proto-cloud from which the star formed and what 

amount was produced in the central, nuclear burning regions of the star itself and 

brought up by convection. 

Similar considerations apply to the observation of absorption and emission lines 

from other objects, such as supernova ejecta, planetary nebulae, and interstellar clouds. 

Some methods and results were already presented in Subsection 3.3. 

If we want to understand the origin of elements on Earth, the abundances in the Sun 

have to be explained first because the planets and the Sun formed from the same 

interstellar cloud. Due to their low gravitation, the smaller planets subsequently lost 

those light elements which were not chemically bound in their crust whereas the Sun 

was able to retain more or less the original composition. In planets, physical and 

chemical fractionation processes then separated certain elements or isotopes and 

concentrated them in different regions, leading to the heterogeneous distribution found, 

e.g., in geological surveys. The solar composition is shown in Figure 13. As an example 

of how the solar composition affects nucleosynthesis studies is shown in Figure 12. In 

order to constrain the relative contributions of the s- and r-process, the solar abundances 

are used to represent the current composition of the local interstellar medium. 

The accurate determination of solar abundances is, therefore, central to all 

investigations of nucleosynthesis. This is reflected in the recent commotion caused by a 

new study of solar abundances (Asplund et al. 2006), revising the previously widely 

used tables of Anders and Grevesse (1989). The new abundances are based on modern 

3D model atmospheres (describing the region in the Sun where line absorption occurs). 

The content of elements beyond H and He was found to be lower by a factor of two 

compared to the previous study. This impacts all kinds of comparative nucleosynthesis 

studies but mainly those involving C, N, O which are the most abundant (apart from H, 
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He). The new abundances resolved previous problems regarding the consistency of 

solar abundances and those of the solar neighborhood. On the other hand, they 

challenge current models of the solar interior, especially regarding the comparison of 

predictions of the local sound speed (which is also dependent on the abundances of C, 

N, O, Ne) and helioseismological results. 

 

6.3 Meteoritic inclusions 

In addition to abundance determinations from stellar spectra, another way to obtain 

information about the composition of the early solar system as well as that of more 

distant environments has become increasingly important in the last years. Certain types 

of meteorites contain inclusions wherein the composition of the early pre-solar cloud is 

conserved. This enables one to also study some isotopic compositions which cannot be 

extracted from the solar spectrum. More surprisingly, some meteorites contain so-called 

presolar grains which are supposed to have been formed from material of other stars. 

The grains traveled through interstellar space with their inherent speed at formation and 

were incorporated into the protosolar cloud from which the Sun and its planets formed. 

Some of them survived the formation of the solar system and also the fall as a meteorite. 

This requires that their host material never experienced temperature above about 1000 

K. Various types of meteorites, most prominently carbon-rich ones (carbonaceous 

chondrites) carry such nm to m sized inclusions, which were incorporated into the 

presolar cloud and were since then shielded from any chemical or physical fractionation 

and mixing processes occurring during planet formation or in the Sun. 

Literally being ―stardust‖, presolar grains provide information not just on the 

isotopic composition of other stars which cannot be determined through their spectra. 

Additionally, they may show the composition of different layers of a star depending on 

their formation process. There are a number of excellent reviews on the topic (e.g. 

Nittler 2003, Clayton and Nittler 2004, Zinner et al. 2006, and the book by Lugaro 

2005). Therefore, here we only summarize the most important aspects regarding types 

and origins of presolar grains and the methods to analyse them (see also Chapter xxx). 

Presolar grains are foremost identified by their non-solar isotopic composition. They 

are subsequently classified by the mineral phase carrying the isotopes and by the 

isotopic ratios of certain elements (mainly C, N, O, Si, Al, Fe). Most abundant but the 

least understood are nanodiamonds. Best studied are the second most abundant SiC 

grains. Further phases include, in order of abundance, graphite, TiC, ZrC, MoC, RuC, 

FeC, Fe-Ni metal, Si3N4, corundum, spinel, hibonite, TiO2. 

The well-studied SiC grains can be subdivided into different classes according to the 

isotopic anomalies (relative to solar) they exhibit. The bulk of 90% is made of so-called 

mainstream grains which are thought to originate from AGB stars, showing almost 

pure s-process isotopic ratios. They are inferred to have formed in the winds of AGB 

stars or planetary nebulae. Therefore they are a snapshot of the surface composition of 

the star but AGB stars, contrary to other types of stars, have strong convection, carrying 

freshly synthesized nuclides from the burning zone deep inside the star to the surface 
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(Section 4.5.1). Much of the recent progress on the nucleosynthetic details of the s-

process in recent years is due to the analysis of presolar grains. 

A small subclass of SiC grains, the so-called type X grains, contain a large 
26

Mg/
24

Mg ratio and large excess of 
44

Ca, pointing to a core-collapse supernova origin. 

The radioactive isotopes 26Al and 44Ti are concurrently produced only in such 

supernovae and decay to 26Mg and 44Ca, respectively. The SiC X grains are thought to 

be formed in supernova ejecta. As these consist of a large fraction of the progenitor star, 

grains can also condensate from material of inner layers or from a mixture of different 

layers of the star. There is some success in reproducing X grain compositions by mixing 

abundances predicted by current stellar models. 

The origin of other types of grains is still debated and a unique identification with a 

site is not always possible. They could have been produced in supernovae, AGB stars, 

or novae. 

The analysis of the content of a grain requires a combination of chemical and 

physical methods to separate the grain from the surrounding meteoritic material and to 

determine the isotopic abundances contained within. Luckily, mineral phases 

condensing in the vicinity of stars contain acid-resistant phases which can be separated 

from the meteorite by essentially dissolving everything else away. Until recently, this 

was the way to go but it has the disadvantage that other, less acid-resistant, presolar 

phases, e.g. silicates, may be lost in the process. Once the grain material has been 

isolated and concentrated, standard mass spectrometric methods (with AMS being the 

most sensitive) can be applied. A complete analysis of the presolar content, including 

more easily dissolvable materials, require new analytic methods, currently under 

development. Among those are Resonance Ionization Mass Spectrometry (RIMS), 

allowing the measurement of ppm-level trace elements in m-sized grains with 

elimination of isobaric interferences, and even more promising the NanoSIMS, an ion 

microprobe with high sensitivity and high spatial resolution (Stadermann et al. 1999, 

Marhas et al. 2008). The NanoSIMS allows to study a grain in a slice of a meteorite and 

to obtain isotopic abundances with information on their location within the sample. This 

enables studies of layered grains in their meteoritic matrix and also grains made of 

easily dissolvable phases. This is superior to TEM (transmission electron microscope) 

analysis which requires ultra-thin samples cut with diamond knives and losing some 

depth information. Nevertheless, the TEM can sometimes be complementary to a 

NanoSIMS analysis. 

Presolar grains open a new, promising window into the Universe by enabling us 

``hands on‘‘ analysis of non-solar, stellar matter. With improved preparation and 

analysis methods this line of research will remain important for many types of 

nucleosynthesis studies, even directly impacting the theory of stellar structure and 

evolution. 
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6.4 Galactical chemical evolution: putting it all together 

Although the Sun is considered to exhibit a typical composition for the disk of the 

Galaxy, it has to be realized that its abundances are only a snapshot in time. As is 

evident from the discussion in the preceding sections, the Sun contains elements which 

have been produced in other stars or Galactic sites and the solar abundances (Figure 13) 

are only a snapshot of the composition of the interstellar medium. After the first stars in 

the galaxies lit up, numerous generations of stars have contributed to the elemental 

contents of the interstellar material from which new stars form. The current stars, on the 

other hand, are building up material which will be incorporated in future stellar 

generations. All this is illustrated by the fact that a gradient in metallicity is observed 

depending on the age of the star (see Subsection 3.3). Older stars contain less ‗metals‘, 

i.e. elements other than H and He, because the interstellar medium from which they 

formed contained less. Therefore it becomes obvious that the interstellar medium in a 

galaxy becomes enriched with elements over time. The general picture is that of a cycle 

of matter within a galaxy as shown in Figure 14. 

 

FIGURE 14. Schematic view of the cycle of matter in a galaxy. 

The primordial galactic material is processed and reprocessed in star-forming 

regions many times. Indeed, a general enrichment can actually be found when 

comparing galaxies of different ages. 
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We do not know how many generations of stars have contributed to the solar 

abundances and how well the products were mixed into the proto-solar cloud. 

Therefore, a comparison with abundances in old stars allows to draw conclusions on the 

relevant processes. For example, recent observations in stars found in the halo of the 

Galaxy show that the relative r-process abundances are very similar to the ones in the 

Sun, although very much depleted (Sneden et al. 2000, Cayrel et al. 2001, Frebel et al. 

2005). This indicates that the r-process seems to be robust, i.e. occurring under almost 

the same conditions and giving almost the same elemental yield in each event. 

For a complete understanding of the chemical evolution of a galaxy it is necessary to 

integrate over the yields of all possible contributors. With the advent of advanced stellar 

models, galactic chemical evolution has become a field of its own, providing further 

constraints to the nucleosynthetic models. Many considerations enter, such as the 

amount and composition of ejecta per event, frequency of events, and mixing processes 

which distribute matter within a galaxy (Pagel 1997). Thus, all available knowledge is 

combined to reach an improved level of understanding. However, the young field of 

galactic chemical evolution still faces major difficulties due to the time-scales involved, 

the limitations in observations and models, and the impossibility of accurately dating 

stars and galaxies. One of the big questions is how material is mixed and transported. 

Nevertheless, recent promising trends in modeling galactic evolution might even 

provide constraints, e.g., on individual supernova models rather than only on global 

properties of SN II and SN Ia. The reason for this possibility is the fact that there is no 

instantaneous mixing of ejecta with the interstellar medium, and therefore early phases 

of galactic evolution can present a connection between low metallicity star observations 

and a single supernova event (Argast et al. 2000). 

Summarizing, we want to emphasize again the tremendous achievements obtained 

over the last decades. Involving accurate and detailed studies it was made possible that, 

coming from more simple observations of the Sun and nearby stars, we are now in the 

position to study details of the origin of chemical elements and their isotopes on our 

planet as well as the evolution of their abundances in entire galaxies and in the early 

Universe. It is especially amazing to ponder this from the point of view that this 

knowledge was gathered without really or just barely leaving the surface of our planet. 

Future efforts in nuclear physics and astronomy ensure that the stream of data will 

not be cut off and that we can improve our detailed knowledge not only of the origin of 

the elements but also of the position of our Galaxy, our planet, and ourselves within a 

vast, evolving Universe. 
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