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Physicists embarking on seemingly routine error analyses are finding themselves grappling with
major conceptual issues which have divided the statistics community for years. While the
philosophical aspects of the debate may be endless, a practicing experimenter must choose a way to
report results. The results can depend on which of the two major frameworks, classical or Bayesian,
one adopts. This article reviews reasons why most data analysis in particle physics has traditionally
been carried out within the classical framework, and why this will probably continue to be the case.
However, Bayesian reasoning has recently made significant inroads in some published work in this
field, and many other particle physicists may frequently think in a Bayesian manner without
realizing it. I illustrate the issues involved with a few simple, commonly encountered examples
which reveal how each framework can sometimes lead to unsatisfying results. © 1995 American

Association of Physics Teachers.

L. INTRODUCTION

In recent years, many particle physicists' have become
increasingly aware of the deep conceptual conflicts in statis-
tical inference, and of why these conflicts cannot always be
dismissed as philosophical arcana: published experimental
results can depend on which of the two statistical frame-
works, classical or Bayesian,? one adopts. The lurking con-
troversy can come as a shock to a graduate student who
encounters a statistical problem at some late stage in writing
up the Ph.D. dissertation. Upon asking colleagues what sta-
tistical method to use, he or she will frequently get a classi-
cal answer having its roots in a few influential reference
texts or unpublished lecture notes.*> However, the persistent
student may discover that a ‘““standard” classical technique
has an undesirable feature, and that a Bayesian method can
be more attractive in certain contexts. In fact, the statistical
methods section of the Particle Data Group’s desk reference®
has recognized some Bayesian reasoning over the last few
years.

Many particle physicists have therefore been motivated to
learn more about the logical and philosophical foundations
of statistical methods. Engineers’ and physicists® from other
specialties have been vocal as well, e.g., a Nobel Laureate in
condensed matter theory who decreed matter-of-factly that
Bayesian statistics ““are the cotrect way to do inductive rea-
soning from necessarily imperfect experimental data.”® Still,
pure unabashed Bayesians are an almost invisible minority in
particle physics publications.®"! In the spirit of the 1986
article, “Why isn’t everyone a Bayesian?,” by statistics re-
searcher B. Efron,'? one can ask this question of physicists.
In this article I try to answer this question from the point of
view of particle physicists, amidst whom most of my expe-
rience and discussions have taken place.

I restrict this article primarily to the discussion of confi-
dence intervals, i.e., what physicists call either the “error”
on a measurement, or an “upper limit” in the case of a null
result. I follow common practice in referring to these inter-
vals generically as “confidence intervals” regardless of
whether the construction is classical or Bayesian, even
though the phrase was originally coined to distinguish the
classical construction. (Bayesian alternative appellations
such as “credible intervals” are not used in particle physics.)
A more complete discussion would include the decision-

making process, but I do not attempt to cover that here.

Confidence intervals are the way particle physicists normally
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report results, and there is reasonable consensus in the field
regarding appropriateness of various methods. Decision
theory remains much less formally defined in particle phys-
ics, even though a crucial part of one’s work consists of
deciding which experimental results to believe.

In Sec. II, I use the simple Gaussian example to outline the
dichotomy between classical and Bayesian methods. I note
the differing roles of the likelihood function: classically, it
provides a handy means for computing approximate confi-
dence intervals, while for Bayesian intervals, it has a more
fundamental role. Since the concept of frequentist coverage
is so central to classical confidence intervals, I devote Sec.
III to its explication. In Sec. IV, I discuss the case in which a
measured quantity is known in advance to be constrained to
a physical region, and how unhappiness with classical results
in this case has led to the acceptance of a Bayesian tech-
nique. Section V uses the common particle physics case of
Poisson statistics to emphasize the difference between Baye-
sian and classical methods. Stark contrasts follow from the
asymmetric nature of the distribution and the fact that the
parameter is continuous while the observed values are dis-
crete. This section also highlights the thorny problem of
specifying an uninformative prior density in Bayesian statis-
tics. I then describe in Sec. VI a common case where purely
classical statistics leads to ‘‘unacceptable” behavior when
combining the Gaussian and Poisson statistics of the earlier
sections. I conclude in Sec. VII with a discussion of the
merits and prospects of classical and Bayesian methods in
particle physics.

II. DEFINITIONS AND SIMPLEST EXAMPLE

I beéin with a simple familiar problem in order to define
terms.”” Suppose a measurement of the mass m of an el-
ementary particle yields the value mg, and it is known that
the measuring apparatus yields values normally distributed
about the unknown true mass m,, with a known rms devia-
tion o,,. Also assume in this section that m, is many rms
deviations above zero. The probability density P(m|m,) for
obtaining the value m given the true mass m, is

e—(m—m,)2/2¢r,2n. (1)

1
P(m|m)=N(m,,0,)= W

We wish to construct a confidence interval (m,,m;) at a

© 1995 American Association of Physics Teachers 398



T | T I T | T l T | T | T ] I l T | T

0.4 —

0.1

10

T I T [ T I 1 I T I T | T | T I T l T
0.4 - —

03—

P{m | m,=6)

0.1

7 T I T | 1 | 1 I T l T I I I T | T | 1

-2 InL{me=51m,)

1IIII|I|III||II]'III

=5)

P(m, 1 m,

Fig. 1. Methods for 68% C.L. confidence interval construction in case of Gaussian pdf with known ¢,,=1.0, after single measurement yields my=5.0. (a) and
(b) Classical construction of left and right interval endpoints; (c) increase of —2 In.% by one unit (d) Bayesian with uniform prior.

specified confidence level (C.L.), which I take to be 68% in
this section.’

Classical confidence intervals are those based on the
method outlined in the famous 1937 paper by Neyman.!6
They have the property that no matter what m, is, 68% of the
intervals calculated by an ensemble of experiments will con-
tain m,. This defining property of “frequentist coverage”
emphasized in Sec. III. One classical construction of a (cen-
tral) 68% C.L. confidence interval (m,,m,) proceeds by
finding m,<m such that 16% of the area under N(m,,a,,)
is at values of m greater than m [Fig. 1(a)], and by finding
my,>my such that 16% of the area under N(m,,0,,) is at
values of m smaller than m, [Fig. 1(b)]. One obtains
my=my—0o, and my=mgy+a,, and by common conven-
tion one states that the measured mass is “my* o,

Many people do not think about the. problem this way.
Instead, they mentally construct a normal curve centered on
the measured value m,."This is usually justified in terms of
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likelihood functions, which provide the uneasy common
ground (and hence one source of confusion) between the
classical and Bayesian methods.

The likelihood .Z(mg|m,) is given by the same expression
as Eq. (1) with the important change in point of view: by
writing % instead of P we draw attention to the fact that we
are considering its behavior for different values of m,, given
the particular datum m=m obtained in this experiment:

Bmolm,)= e (mo=mp?i2e, @

1
V2 7'1'(rm7

The “measured value” (i.e., point estimate) of a physical
quantity is frequently taken as that value which maximizes
the likelihood % or equivalently the log-likelihood In .%.
The rub comes in choosing how to extract “errors” (confi-
dence intervals) from In %, particularly when it is not para-
bolic. Most pamcle physicists follow the recommendation of
the classical texts and use differences of In % from its maxi-

e
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mum value (or equivalently likelihood ratios) to map out
confidence intervals (or regions in the multiparameter case).
This is conveniently done with an available FORTRAN
routine.'®"’

From this classical point of view, it is legitimate to draw a
likelihood function centered on the measured value m,, but it
is illegitimate to consider areas under the curve, i.e., to inte-
grate the likelihood function as if it were a probability den-
sity. The usual classical method for obtaining a 68% C.L.
confidence interval from % is to let m; and m, be those
points at which In % is down from its maximum by a differ-
ence of 1/2 unit. This is often expressed equivalently as
choosing those points at which —2 In % increases by one
unit [Fig. 1(c)]. [For the Gaussian case this is same as the
chi-square method, since —2 In F=(my—m,)*/0%.] In non-
Gaussian situations, this and other classical techniques® for
extracting intervals from % yield only approximate confi-
dence intervals in the sense of Neyman, as discussed further
in Sec. V A below.

In contrast, in the Bayesian framework one does use % as
one of two ingredients for constructing the probability den-
sity function (pdf) for the unknown true value of m,, and in
many cases that pdf can be .% itself. Those who view % as a
pdf will obtain 68% C.L. (central) confidence intervals by
finding those values of m,; and m, which yield tails which
each contain 16% of the area under the curve [Fig. 1(d)]).

Philosophically, there is a whole arena of controversy re-
garding whether or not it makes sense to have a pdf for the
true value of a physical quantity, etc. That debate goes on,
but meanwhile, a pragmatist can consider the utility of equa-
tions generated by the two approaches while skirting the is-
sue of buying into a whole philosophy of science. Operation-
ally, the line of demarcation between classical and Bayesian
methods essentially lies in whether or not % is integrated.
Thus, we will identify a method as Bayesian if the likelihood
function is used in forming a probability density from which
intervals are computed by integration.

Bayesian methods proceed by invoking an interpretation
of Bayes’s Theorem™>*?? in which one deems it sensible to
consider a pdf for the unknown true value m,. We let P(m,)
be the “prior” pdf for m,, which reflects our beliefs before
doing the experiment. We let P(m,|mg) be the “posterior”
pdf for m, (given the data mg), which reflects our modified
beliefs after incorporating the results of the experiment. Then

it is precisely the likelihood function %(mg|m,) which re- .

lates the two:

P(m,|mg)=F(mo|m,)

XP(m,) /J;n . Z(molm,)P(m,)dm?.
3

The method illustrated in Fig. 1(d) can thus be identified
as Bayesian with uniform prior [i.e., P(m,)=const]. In gen-
eral, Bayesian confidence intervals are constructed using the
posterior pdf, as illustrated more extensively in Sec. V B. In
particle physics, the prior is almost always taken to be uni-
form (where nonzero), although this assumption often goes
unemphasized by those who merely report that they “inte-
grated the likelihood function.”

In the example of Fig. 1, the 68% confidence interval ob-
tained is of course independent of the method chosen. How-
ever, as demonstrated in Secs. IV-VI, some of the most
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common analysis problems in particle physics go straight to
the core of the classical Bayesian debate in a way that cannot
be avoided.

III. THE FREQUENTIST CONCEPT OF
“COVERAGE”

Although particle physicists may use the words “confi-
dence interval” loosely, the most common meaning is still in
terms of original classical concept of coverage which follows
from the method of construction suggested in Figs. 1(a) and
1(b). This concept is usually stated (too narrowly, as noted
below) in terms of a hypothetical ensemble of similar experi-
ments, each of which measures m and computes a confidence
interval for m, with say, 68% C.L. Then the classical con-
struction guarantees that in the limit of a large ensemble,
68% of the confidence intervals contain the unknown true
value m,, i.e., they “cover” m,. This property, called cover-
age in the frequentist sense, is the defining property of clas-
sical confidence intervals. It is important to see this property
as what it is: it reflects the relative frequency with which the
statement “m, is in the interval (m,,m,)” is a true state-
ment. The probabilistic variables in this statement are m and
m,; m, is fixed and unknown. It is equally important to see
what frequentist coverage is not: it is not a statement about
the degree of belief that m, lies within the confidence interval
of a particular experiment. The whole concept of “degree of
belief” does not exist with respect to classical confidence
intervals, which are cleverly (some would say devilishly)
defined by a construction which keeps strictly to statements
about P(m|m,) and never uses a probability density in the
variable m, .

This strict classical approach can be considered to be ei-
ther a virtue or a flaw, but I think that both critics and adher-
ents commonly make a mistake in describing coverage from
the narrow point of view that I described in the preceeding
paragraph. As Neyman himself pointed out from the
beginning,'® the concept of coverage is not restricted to the
idea of an ensemble of hypothetical nearly identical experi-
ments. Classical confidence intervals have a much more
powerful property: if, in an ensemble of real, different ex-
periments, each experiment measures whatever observable it
likes, and constructs a 68% C.L. confidence interval, then in
the long run 68% of the confidence intervals cover the true
value of their respective observables. This is directly appli-
cable to real life, and is the real beauty of classical confi-
dence intervals.

Sometimes one intentionally constructs confidence inter-
vals using a method which gives greater coverage than
claimed by the stated confidence level. Such intervals are
referred to as “conservative.” I believe that normally, if one
wants to ensure greater coverage, a better way is to construct
an interval with a higher stated C.L. (Though with discrete
distributions such as Poisson, some level of conservatism can
be unavoidable.) However, this notion of conservatism can
come in handy for someone advocating a Bayesian method.
If the advocate can show that the Bayesian method gives
conservative intervals, then he or she will likely encounter
less Tesistance or even acceptance (as in the case of physical
constraints discussed in Sec. IV). On the other hand, if a
Bayesian method is known to yield intervals with frequentist
coverage appreciably less than the stated C.L. for some pos-
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sible value of the unknown parameters (i.c., they under-
cover), then it seems to have no chance of gaining consensus
acceptance in particle physics.

Both classical and Bayesian methods of interval construc-
tion rely critically on knowing P(m|m,) correctly. (In the
Bayesian case it is used to construct the likelihood function.)
Much of the skill in experimental physics involves designing
an experiment for which P(m|m,) can be known reliably.
This requires subsidiary calibration measurements that can
exceed the main measurement in terms of work and perse-
verance. If the 68% C.L. confidence interval for a particular
experiment fails to cover m,, then it can be difficult to know
if the experiment was in the “unlucky” 32%, or if a mistake
was made in calculating P(m|m,).

In real physics research, mistakes are of course made, and
much of the scrutiny given to a surprising result consists of
trying to find mistakes in the calculation of P(m|m,). Scien-
tists digesting reported confidence intervals may in effect
modify P(m|m,) by adding allowance for “unknown errors”
depending on the reputation of the experimenter, difficulty
and novelty of the experimental technique, etc. How one
reacts to reported confidence intervals brings us into the im-
portant subject of decision theory, which is however beyond
the scope of this paper.

IV. INCORPORATING CONSTRAINTS INTO
CONFIDENCE INTERVALS

The strongest challenge to the dominance of classical con-
fidence intervals in particle physics comes when there is
“objective” prior information, in particular constraints on
the possible physical values of the quantity measured. This
issue was long anticipated in the statistics literature”> and has
been highly visible in the particle and nuclear physics com-
munities in connection with upper limits on the mass of the
electron neutrino.”* The result was that a Bayesian method
gained recognition by the Particle Data Group (PDG).®

Masses? are physically constrained to be non-negative,
and in fact the quantity more directly measured in these ex-
periments is the square of the neutrino mass m>. In the stan-
dard model, m*=0, but there is widespread speculation (and
some would say evidence) that neutrinos actuallg have a
small, nonzero mass. Direct measurements of m* for the
electron neutrino emitted in tritium beta decay have been
attempted by many groups.

Interestingly, a number of the experlments have reported
negative values for their best estimate of m? , typically ob-
tained by maximizing a likelihood functlon In fact, the
PDG’s weighted average® over all experiments gives a mea-
sured value and central 68% classical confidence interval as
m?=(—54+30) eV The whole interval is in the unphysical
region! The preponderance of experiments reporting negative
values for m? is disconcerting and there is continued specu-
lation about unknown sources of error. Howevet, there is
nothing unusual or alarming about a particular experiment
obtaining an unphysical value. If neutrinos have zero mass
and the resolution function is an unbiased Gaussian, then
even in the absence of unknown biases, half of an ensemble
of experiments will obtain negative values, and 16% of ex-
periments will have 68% classical confidence intervals com-
pletely in the unphysical region. Independent of one’s atti-
tude toward possible unknown errors in the electron neutrino

401 Am. J. Phys., Vol. 63, No. 5, May 1995

0.4 —
P(m* I mi=-16)

0.1 —

O ]

9266100 0 00 200

0.08 —
P(mé | my’=—54) (b)
0.06 — -

0.04 — -

0.02 |- .

1 I i
900 =100 0 100 200

Fig. 2. For mass-squared of electron neutrino, construction of 90% C.L.

upper limit on m? given measured value m3=(—54%30) eV2. (a) Classical

construction, and (b) Bayesmn construction with prior P(m?) vanishing for
m?<0 and uniform for m?:=0.

mass measurements, the question they raise regarding how to
incorporate physical constraints goes right to the heart of a
prominent Bayesian classical conflict.

In the absence of strong evidence for a nonzero mass, one
typically quotes an upper limit on the mass at a specified
confidence level. (Of course,?® one should also report the
measured central value and error to facilitate combining re-
sults from different experiments, and to allow the reader to
construct limits as he or she desires.) The 90% C.L. upper
limit is the right endpoint of the highly noncentral 90% C.L.
confidence interval whose left endpoint is —o, The classical
construction, illustrated in Fig. 2(a) using the PDG world
average, results in an unphysical 90% C.L. upper limit of
—16 eV>2. (Thls is the mean of the Gaussian, with rms devia-
tion —30 eV?, which has 10% of its area to the left of —54
eV?2) Such results are allowed in the pure classical method;
they are simply included in the 10% of all “90% C.L. upper
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limits”” which are false statements. However, when the upper
limit is negative, one knows that the result is in the false
10%, which is of course disturbing.

In the face of such unphysical limits, it has become
common® to use the Bayesian Eq. (3), only with m? substi-
tuted for m everywhere. The Bayesian approach naturally
accommodates the physmal constramt simply by using a
prior pdf P(m?) which is zero if m?<0 and uniform other-
wise. The resultlng posterior pdf is just the tail of Z(m3|m?)
whlch lies at m?=0 [Fig. 2(b)]. Integrating yields m?<26.6
eV? at 90% C.L., nalvely implying m,<5.2 eV, though the
PDG urges caution in interpreting a 11m1t such as this. A
major factor in the acceptance of this method is that the
resulting upper limits are less restrictive than the classical
intervals and hence conservative in the absence of mistakes.

Though Bayesians may enjoy the imprimatur of the PDG,
the inherent difficulty in the Bayesian method is also imme-
diately apparent: in which quantity (m, m2 In m, etc.) should
the prior be uniform? The consensus view settled on m?, but
the fact that the upper limit depends on this choice remains
extremely unsettling to many. I come back to this important
point in Sec. V B below.

As a test of where one stands on the issue of physical
constraints, one can consider the upper limit on the number
of light neutrinos, as reported by the Mark II collaboration?’
in 1989. At the time of their measurement, the existence of at
least three types of neutrinos (associated with electron,
muon, and tau) was well established, and the outstanding
question was whether or not there was a fourth. At the SLAC
Linear Collider, they measured Z-boson resonance param-
eters, with precision which was to be improved immensely
within months by competition from the LEP experiments-at
CERN.® In an analysis which assumed standard model cou-
plings but which fit for the Z mass and the number of neu-
trinos N, the Mark II collaboration obtained N,=2.8*0.6.
Apparently using the classical method, they also reported,
“the 95% C.L. limit, N ,<<3.9, excludes to this level the pres-
ence of a fourth massless neutrino species within the stan-
dard model framework.” This was perfectly respectable, but
it was also of interest that the Mark II’s ability to exclude
N,=4 at this level was partly due to a mild (1/3 standard
deviation) downward fluctuation in their central value, from
3.0 to 2.8. A Bayesian analysis with (uniform) prior vanish-
ing for N,<3 would have yielded a slightly weaker state-
ment on this crucial issue.

In the above, the measured quantity N, is treated as a
continuous variable, which ig sensible in broader contexts
because new physics (such as supersymmctry) can manifest
itself as an apparent fractional increase in N,. However, for
the narrow question of how many neutrino types there are if
the rest of the standard model is not extended, the true un-
known value of ¥, is an integer. This discreteness suggests a
likelihood ratio analysis in which one compares the relative
likelihoods of the various integer values of ¥, . A Bayesian
may then additionally incorporate his or her prior probabili-
ties for each N, (in particular zero for N,<3), and compute
posterior probabilities. I leave this as an exercise for the
interested reader.

Thus, although the physics issue of the number of neutrino
types quickly became moot because of the LEP data, the
Mark II result remains a superb illustration of a general sta-
tistics problem, especially since the Mark II result was not so
unphysical as to generate doubts about the experiment.
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V. CONFIDENCE INTERVALS USING POISSON
STATISTICS

Poisson statistics naturally arise in counting experiments,
€.g., as the limit of binomial statistics when one is counting
the number of times a rare process is observed (“suc-
cesses”), which is a small fraction of all processes taking
place. In the last decade, searches for new processes (new
particle production, reactions, or particle decay modes) have
become commonplace as part of a large effort to discover
new laws of physics “beyond the standard model.” Nearly
all such searches have resulted in no claims of new physics,
but rather in upper limits on their rates. In discussing the
statistics of such limits, I restrict most of my discussion to
the simplest cases, where it is already apparent that Bayesian
intervals do not have frequentist coverage except in special
cases. However, an innocent-looking complication in Sec. VI
introduces a bizarfe twist for the classicists.

Consider an experiment which searches for a possible rare
process (a rare decay such as u—ey or a rare interaction
such as that producing thé top quark) by observing with a
detector the number of events # which appear to be from the
signal. Then n is drawn from a Poisson distribution with
unknown true mean y, [and rms deviation equal to (z,)"2]:

T Hy
P(n|p,)= pie : 4)
Let R, be the unknown true value of the relevant physical
quantity which is to be measured (branching ratio, cross sec-
tion, etc.). Then we can always write u,=R,S,, where S, is
the true value of the experiment’s sénsitivity factor: a com-
bination of the number of interactions or decaying particles,
observing live time, detection efficiency, etc. In order to use
n to make an inference about the value of R,, one needs
information about the value of S,. This information is typi-
cally obtained from subsidiary measurements that give an
estimate S for §,, and its uncertainty oy.

We assume until Sec. VI that oy is negligibly small, so
that we know the sensitivity S, exactly. Then all inferences
about the branching ratio R, directly correspond to inferences
about y,. Furthermore, throughout this article, we assume
that there are no background events, i.e., we assume that all
events attributed to the rare process are in fact real. Then
suppose that n, events are observed. One way to report the
result of the experiment (the point estimate R of the true
value R,) is

(2]

S, Sy

using the estimate z=nry* (ny)'* of the true mean u,. Here
the quantity following the “=*” is an estimate of the rms
deviation from Poisson statistics. However, a more common
convention is for * to indicate a 68% confidence interval,
which for small n, can differ significantly from Eq. (5).

In analogy with Fig. 1, there is a variety of ways to con-
struct 68% C.L. intervals for u, (and hence R,). All methods
in common use retain n, as the best estimate of u,, but the
variously computed confidence intervals (which typically do
not have n, as midpoint) are generally different. The fact that
n is discrete while u, is continuous means that the classical
and Bayesian construction methods bear no pictorial resem-
blance to each other.

For purposes of illustration, we examine in detail the case
where ny=3. Such a small number of observed events is

)1/2
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Table 1. 68% C.L. confidence intervals (u,,u,) for the mean of a Poisson distribution, based on the single

observation ny=3, calculated by various methods.

Method Prior Defining equation(s) Interval Length  Coverage?
Root-mean-square deviation no * ng (1.27,473) 346 no
Classical central Egs. (6) and (7) (1.37,5.92) 4.55 yes
Classical shortest Method of Crow and Gardner*  (1.29, 5.25) 3.96 yes
Likelihood ratio Eq. (9) (1.58, 5.08) 3.50 no
Bayesian central 1 Egs. (16) and (17) (2.09, 5.92) 3.83 no
Bayesian shortest 1 Eq. (16); minimum g, — (1.55,5.15)  3.60 no
Bayesian equal * 1 Eq (16); p—pi=p—p (1.15,4.85)  3.70 no
Bayesian central 1/u, Egs. (16) and (17) (1.37, 4.64) 3.27 no
Bayesian shortest 1/p, Eq. (16); minimum z,~ (0.86,3.85)  2.99 no
Bayesian equal + 1, Eq.(16); p—u=p—f (1.36,4.63)  3.27 no

*Reference 31.

typical of a pioncering frontier experiment. Different ways of
calculating 68% C.L." confidence intervals are discussed be-
low, and summarized in Table I. However, constructing a
68% C.L. interval for u, is only one option. An experimenter
unsure that the background is negligible may prefer to quote
an upper confidence limit, as discussed in Sec. V C.

A. Classical confidence intervals in the Poisson case

Starting from Eq. (4), the most common construction of a.

classical 68% C.L. confidence interval (u;, &,) proceeds??

by finding the value w, such that P(n=ng|u,)=16%,

)

>, P(n|py)=0.16 (6)

n=ng

[Fig. 3(a)]; and by finding the value u, such that P(n
<noluy)=16%,

K

> P(n|p,)=0.16 @
n=0

[Fig. 3(b)]. The criterion of (1—0.68;/2=16% on each side
represents a choice (central intervals®) dictated by taste or
convention. An interesting alternative is to seek intervals of
minimum lenlgth, i.e., those which minimize u,—u,. Crow
and Gardner® gave a recipe for their construction, which for
ny=3 results in the 68% C.L. interval (1.29, 5.25) with
length 3.96, compared to the usual interval (1.37, 5.92) with
length 4.55.

A classical approach might use the likelihood function to
obtain approximate confidence intervals. The likelihood
H(ng|p,) is given by the same expression as Eq. (4), with
the important change in point of view: we now consider its
variation with u,, given the particular data n, obtained in
this experiment:

M"Oe_ﬂr
Hnolp)= ®)
% is maximized for u,= fi=n,. In analogy with the Gauss-
ian case, an approximate 68% classical confidence interval is
obtained by the likelihood ratio method, often implemented
using differences of negative log likelihoods. One finds
Mm1<<ng and p,>ng such that

—2 In F(ng|p1)=~2 In H(no|py)
= —2 In Fnglp) +1. )

t
n()!
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Though not exact, this method and is easy to implement on a
computer’® and to generalize to higher-dimensional
problems.! It is also generally more accurate than the para-
bolic approximation using a symmetric interval of half-
length:

2

17
ou==> P In F(nolpe) | u=3» (10)

which in this case gives du=(ng)'>. More sophisticated
methods for extracting approximate confidence intervals
from the likelihood function exist,”® but they all seem to
undercover when the true mean g, is small.

As noted in Sec. 11 it is important to realize that £(ng|u,)
by itself is not a pdf in w, . This is particularly clear from the
mathematics in this Poisson case since .% is constructed from
the expression for probabilities of a discrete variable n, not
from a probability density. Nothing in the construction of %
allows one to multiply it by d u, and integrate, or to consider
areas under it. Classically, one strictly looks only at ratios of
Z for different values of g, .

B. Bayesian confidence intervals in the Poisson case

In order to make mathematical sense out of putting
H(no|p,) inside an integral over y, , one must multiply it by
a pdf in u,, and this is precisely the approach taken in Baye-
sian statistics. In analogy with Eq. (3), the posterior pdf for
M, is proportional to the product of the likelihood function
and the prior pdf for u,:

P(Mrlno)dﬂtzg(”ol,ut)[P(ﬂr)dﬂt]/

f z(”oll"t)P(ﬂt)d,ut- (11)
all g,

I have explicitly written the differential element d, on both
sides to emphasize that mathematically it goes hand-in-hand
with a probability density, which on the right-hand side is
P(u,). The denominator must be carefully justified,>** but
here it just serves to normalize the pdf, and it is suppressed
below. P(u|ng) is a density in g, which can be integrated,
and it makes sense (at least to a Bayesian) to use areas under
P(u,|ng) to construct confidence intervals.

The problem lies in what to use for the prior pdf P(u,).
For a large sample of data or a sharply peaked likelihood
function, one is not too sensitive to the choice of P(u,). But
in the case typified by our single experiment with small n,,
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the choice of P(u,) can be critical. For reporting results, one
would like to use a prior density which is objective in a
vaguely defined sense, corres?onding to what statisticians
call “uninformative” priors,’**? which attempt to represent
an absence of prior knowledge about w,.

By far the most common practice in particle physics is to
use the uniform prior P(u,)=1, wherever , is defined (i.e.,
#,>0). Thus one has the equation

P(pdno)dp Hnolpr)dp, (12)

with its hidden “1” for the prior. This represents a rather
naive choice, but I think it survives for Poisson statistics
partly because of a mathematical curiosity in one special
case: if Bayesian upper limits are calculated with this prior,
then one obtains precisely the same upper limits as with the
classical construction! (See Sec. V C below.)

The naivety of the choice of uniform prior is exposed by
two considerations. First, we note that the physical process
giving rise to Poisson statistics is often exponential decay,
which is equivalently described by either the mean lifetime
or its inverse, the decay rate. Accordingly, one experimenter
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may prefer to think in terms of u, and hence use a prior
which is uniform in g, while another experimenter may
prefer to think in terms of 1/u, and hence use a prior which
is uniform in 1/g,: P(1/p,)=1. The experimenter who ana-
lyzes the data in terms of 1/u, will write

P(l/utlno)d(llﬂt)az(nol1/.ut)XP(l/u,)d(l/M;)(-m

The likelihood function has the well-known property that it
is invariant with respect to transformations of the variable
4, . That is, F(ng|1/u,)=F(ng|u,), since both likelihood
functions are actually constructed from Eq. (4). (This under-
scores the fact that a likelihood function is not a pdf, and
does not behave like a pdf.) Equation (13) becomes [using

d(1/p)=—dp/ui]
P(1/p|ng)d(1/ p,) o = Hnol pw)d p, i (14)

But the posterior densities must for consistency obey
—P(1/p|n)d(1/ ) =P(p,|n)d(p,), so that Eq. (14) be-
comes
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P no)dpw, < (1/ u?) Eno| p)d (15)

in contradiction with Eq. (12). The contradiction of course
arises because the assumptions of uniform prior for both u,
and 1/u, are inconsistent. The dilemma of what to use for an
uninformative prior can be stated as: in what metric, i.e., for
what function of u,, should the prior be uniform? The an-
swer is certainly not “obviously u,!”

The choice of uniform prior is naive for another reason,
namely that statisticians known for advocating Bayesian sta-
tistics most strongly include those who have argued that for
Poisson statistics, the uninformative prior P(u,) should be
either (11,)"2 or 1/u,. The monograph by Harold Jeffreys,*
which reflects a career devoted to the exposition of a Baye-
sian theory of probability, discusses both (u,) "% and 1/4,,
and seems to come down on the side of 1/u, if absolutely
nothing is known about u,.

Jeffreys’s original argument™ for P(u,)=1/u, was that it
is invariant under changes of power of the parameter being
estimated, such as the change from y, to 1/u, above. That is,
the priors P(u)dp,~dp/p, and P(ub)dut=dpf/ uf are
consistent for any power k. Both are proportional to d(In u,),
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and we see that In u, is the metric in which this prior is
uniform. This may amuse those physicists who sometimes
view “orders of magnitude” as the natural metric!

A related argument™ for P(u,)=1/p, is based on requir-
ing consistency for two experimenters, each measuring the
rate of the same decay process, but each using his or her own
absolute standard for the passage of time.

The arguments®* for P(u,)=(u,) V2 involve a choice
of metric which is deemed “natural,” either because of a
criterion of shape invariance under data translation, or be-
cause it is the information metric familiar to statisticians.

Thus, among these Bayesians, there are two main candi-
dates for the uninformative prior for the mean u, of a Pois-
son process, and neither of them is the uniform prior! I com-
pare the uniform and 1/u, priors in illustrations below.

Once the prior is specified, Bayesian 68% C.L. confidence
intervals (u;, u,) can be easily calculated to obey the defin-
ing criterion

#2
[“Piudnordu=o.65. (16)
M1
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As with classical intervals, they are not uniquely determined
without further choice dictated by taste or convention. Vari-
ous possibilities are illustrated in Figs. 4 and 5 for both the
uniform and 1/u, prior. Bayesian analogs of central intervals
are obtained from the subsidiary requirement

M1 ©
fo P(,U't‘”o)dl-"tzf P(uno)du,, (17)
#o

which puts 16% of the posterior probability on each side of
the interval. [See Figs. 4(a) and 5(a).]

Alternatively, one can find the shortest Bayesian intervals.
There is even an independent argument for choosing shortest
intervals, because it would seem very reasonable to require
intervals to have the property that the posterior P(u,|ng) for
any u, outside the confidence interval be less than P(u,|ng)
for all u, inside the confidence interval. This latter criterion
is sufficient to obtain the shortest intervals. [See Figs. 4(b)
and 5(b).]

Except in the special case of upper limits, Bayesian con-
fidence intervals in the Poisson case typically fail the crite-
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rion of the frequentist coverage. One can see why by com-
paring the central 68% C.L. intervals for ny=3: (1.37, 5.92)
for the classical construction, (2.08, 5.92) for the Bayesian
construction with uniform prior, and (1.37, 4.63) for the
Bayesian construction with 1/u, prior. The Bayesian inter-
vals each have one endpoint identical to the classical inter-
val, with the other endpoint inside the classical interval,
thereby shortening it!

This coincidence of endpoints results from a wonderful
property of the Poisson distribution which connects the clas-
sical and Bayesian prescriptions:

f " Plnoluddp= S, P(nlus), (18)
#2 n=0

so that also

o0

fo”lp(nom,)dus S Pnluy). (19)

ng+1
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In the case of uniform prior, where P(u,|ng)
o« F(nolp,)=P(no| 1), these equations allow us to compare
the classical equations (6) and (7) with the Bayesian analog,
Egs. (16) and (17). They imply that the Bayesian u, is iden-
tical with the corresponding classical u, inferred from ny,
while the Bayesian u, is identical with the corresponding
classical u, inferred from data ny+1, not (!) from data ng.

With the 1/u, prior, the power of u, coming from .% is
reduced by one, with the result that the Bayesian y, is then
identical with classical u, inferred from n,, while the Baye-
sian u, is identical with the classical u, inferred from data
no—1, not from data n,.

C. Upper and lower limits in Poisson case

These results have immediate implications for upper and
lower limits. In both classical and Bayesian constructions, an
upper limit u, is merely a special case of a confidence inter-
val in which the subsidiary choice x;=0 is made in order to
determine the interval uniquely. Similarly, a lower limit is a
special case determined by requiring u,=. It follows that
the endpoints of a central 68% C.L. confidence interval (u,,
1) have the property that u, is a 16% C.L. upper limit on
M., and that u, is a 16% C.L. lower limit. More typical C.L.
values for upper and lower limits, such as 90% and 95%,
have a corresponding relationship to the endpoints of 80%
and 90% C.L. central confidence intervals, respectively. Con-
struction of 90% C.L. upper and lower limits is illustrated in
Figs. 3(c), 3(d), 5(d), and 6, and summarized in Tables II and
1L

We see that Bayesian upper limits on u, derived with uni-
form prior are identical with classical upper limits, while
those obtained with the 1/u, prior (or any prior of the form
u* with k<0) fail frequentist coverage. The 1/u, prior has an
even bigger problem when #n,=0, for then the posterior prob-
ability is not normalizable. Since the computation of an up-
per limit when ny=0 is commonly encountered, this is a
serious defect.

In contrast, Bayesian lower limits using the 1/u, prior are
identical to the classical lower limits, whlle those based on
the uniform prior fail to cover!

Table I summarizes all the above results for 68% C.L.
confidence intervals for classical, Bayesian, and likelihood-
based methods, along with other possibilities including the
rms deviation estimate 3*v3. Tables II and III summarize
the results for 90% C.L. lower and upper limits. The entry in
the last column is “yes” if the method of construction yields
frequentist coverage for all values of the unknown w,. One
who insists on frequentist coverage is not tempted by any-
thing other than the classical constructions, except in the
peculiar cases where Bayesian upper or lower limits coincide
with the classical ones. Hard-core Bayesians reject the crite-
rion of frequentist coverage, and hence claim not to be both-
ered when it is not met. But I believe that the particle physics
community will never knowingly accept a method which
does not provide (at least approximate) frequentist coverage.

Before classical hubris becomes acute, it is worthwhile to
consider a seemingly innocuous complication which is un-
avoidable in a redl experiment.

VL. COMBINING THE GAUSSIAN AND POISSON
CASES

One of the most common statistical problems in particle
physics is to calculate an upper limit on the rate of a Poisson
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Fig. 6. (a) Bayesian (with uniform prior) and (b) likelihood ratio construc-
tions, for 80% C.L. intervals in Poisson case with single measurement
ny=3. The endpoints are 90% C.L. lower and upper limits.

process in the presence of an approximately Gaussian error
on the sensitivity of the experiment. Since the classical and
(uniform prior) Bayesian methods give the same intervals for
Gaussian densities (Sec. II), and the same upper limits of
Poisson processes (Sec. V C), one would hope that ‘combin-
ing the Gaussian and Poisson cases would be a routine mat-
ter, again with classical/Bayesian agreement. Thus it can be
startling to find a total departure of classical and Bayesian
results when ‘one simply combines the two cases. The purely
classical result for upper limits is so counterintuitive that it is
not used in particle physics!

Recently Highland and I have described a sort of classical
Bayesian hybrid method> which gives simply calculable, in-
tuitive results. Others had previously and independently ap-
plied the same sort of reasoning in computer calculations of
limits, but very little seems to have been written on this
problem.

The problem occurs when computing an upper limit on the
rate R,= pu,/S, of a Poisson process, as described in Sec. V,
except now we consider the more realistic case in which the
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Table II. 90% C.L. lower limit u, for the mean of a Poisson distribution, based on the single observation ny=3,
calculated by various methods. The denominator in the Bayesian equations is the normalization coming from

integrating over u, €(0,%).

Method Prior Defining equation Limit Coverage?
Classical B n=n P (nlp1)=0.10 1.10 yes
Likelihood ratio —2In Flnglp)=—2In Zngla)+1.64 1.29 no
Bayesian 1 0.1= IS‘Z(nolu,)du, /(denom) 1.74 no
Bayesian Upy  0.0= 251/ 1) F(mol 1) g, /(demom) 110 yes

true sensitivity factor S, is unknown and is estimated by
S+ o from subsidiary measurements. The uncertainty in de-
termining S typically arises from the additive effect of many
things, so that one can consider S to be sampled from an
approximately Gaussian probability density P(S|S,)

=N(S,,05) whose rms dev1at10n o5 is presumed known (af-
ter a lot of calibration work).?

One frequently refers to the expected Poisson fluctuation
in the number of events as the ‘“statistical error” and the
uncertainty in S as the “systematic error.”” In reporting a
significantly nonzero result, it is common to report the sta-
tistical and systematic errors separately, and then combine
them in quadrature if a single overall error is desired. The
generalization of Eq (5) is then R (no/8) * oy, where
og= R(l/p0+cr,zel) 2 and o,=0g/S is the relative uncer-
tainty in S.

The case of interest here is when n, is small and one
wishes to place an upper limit on the branching ratio
R,=u,/S,. One desires a way to introduce the systematic
eIIor U, into the pure Poisson upper limit from Sec. V. The
problem can be illustrated with the simplest case, ny=0 (no
signal events are observed). The classical 90% C.L. upper
limit on , [from Eq. (7) with 0.10 on the right-hand side] is
well-known to be In 10~2.3: if the mean of a Poisson distri-
bution is larger than 2.3, there is less than 10% chance of
obtaining ny=0. If there is no systematic error (o, =0 so
S=3§,), then the 90% C.L. upper limit on R, is 2.3/S,. The
sticky problem arises when o0,,#0; e.g., 0,,=0.1, i.e., the
sensitivity is known to 10%.

Two of the most common methods for dealing with this
case have been (1) to ignore gy, and report the upper limit
2.3/S, or (2) to add 10% to 2.3/S and report 2.53/S. No
justification is usually attempted for either method (though
the second can claim to be conservative). One thing is
“clear” to all however: An acceptable method for incorpo-
rating o, into the upper limit must not result in an upper
limit less than (2.3/S)! Otherwise, if two experiments each
find ny=0 and have the same S, the poorly calibrated one
will report a more restrictive limit than the superbly cali-
brated one. '

Thus it may come as a great shock that a purely classical
construction of the 90% C.L. upper limit does yield a value
less than (2.3/S)! How this happens can be understood by
first examining the coverage of the upper limit ignoring o,
in the case where u, is near 2.3 compared to o, : say
m,=2.28 or u,=2.32 if ¢,,=0.1. For either 1,=2.28 or
M, =2.32, one observes n=1 approximately 90% of the time,
and in these cases a computed upper limit which ignores o,
will be 3.9/S or greater; these limits cover R,= u,/S, virtu-
ally always. In the remaining cases where the observed ng is
zero (about 10% of the time), the computed upper limit ig-
noring o is 2. 3/S, which will cover R, whenever
§$<(2.3/u1,)S,, which is about half of these remaining
cases! Thus, if u,=2.28 or u,=2.32, a classical construction
which assumes o,,,=0 covers R, about 95% of the time.
Since this conclusion is independent of the sign of (2.3~ u,),
we see that in general ignoring o, overcovers the true value
by a finite amount.

Therefore, a classical construction which incorporates
0,¢#0 and computes an upper limit with actual 90% cover-
age will result in a more restrictive limit, i.e., less than 2. 3/S.
If 0,,=0.1, then 90% coverage can amazmgly be obtained
by stating upper limits of 2.0/S when ny=0 and similarly
lower-then-usual upper limits when n,#0. As with all claims
about frequentist coverage this is easily verified by Monte
Carlo simulation.*®

This peculiar effect is a consequence of the discrete nature
of the observations in a Poisson process. Discrete distribu-
tions (the binomial distribution is another) lead to upper lim-
its which can cover the true value more than claimed by the
confidence level. As soon as a continuously varying observ-
able is introduced into the problem, the upper limits can
sometimes be relaxed in a paradoxical way.”

I cannot imagine these perfectly valid classical upper lim-
its belng generally accepted. The paper by Highland and

% treated the Poisson mean classically, reflecting the bias
in the field against Bayesian statistics, and avoiding the issue
of prior density for w,. But we took a Bayesian approach to
the sensitivity in that we considered the subsidiary measure-

Table III. 90% C.L. upper limit u, for the mean of a Poisson distribution, based on the single observation
ny=3, calculated by various methods. The denominator in the Bayesian equations is the normalization coming

from integrating over u, (0,%).

Method Prior Defining equation Limit Coverage?
Classical 2:":0P(n|p.2)=0.10 6.68 yes
Likelihood ratio =2 1n Hngluy)=—2 In Hlnglr)+1.64 5.80 no
Bayesian 1 0.1=/7 Z(n0| )du, /(denom) 6.68 yes
Bayesian g, 01= f (l/u,)Z(noLu,)d,u,/(denom) 532 no
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ments to yield a posterior pdf P(S IS‘,a's) for the true sensi-
tivity §,. We then calculated the upper limits such that the
true value is covered by 90% of an ensemble of experiments
with sensitivities sampled from P(S|S,0 ). The effect is to
yield a reported upper limit greater than 2.3/S in the case
ny=0, as intuitively demanded. For small o, [independent
of whether or not P(S|S,a) is Gaussian], the approximate
formula is

R,<2.30(1+2.3002%/2)/S (90% C.L.. (20)

Generalizations are given in our paper.

A fully Bayesian treatment with essentially uniform prior
gives similar results, if the prior for S, is used to rule out S,
unreasonably close to zero. Thus, in a deceptively simple
situation, the classical construction gives an unacceptable re-
sult, and a touch of Bayesianism changes the sign of the
effect and gives it a reasonable value!

VIL. CONCLUDING REMARKS

The most superficial answer to the question posed in the
title is that people have generally been taught classical meth-
ods rather than Bayesian methods. Thus we may ask why the
(relatively few) influential teachers adopted the classical
point-of view. Much of the answer lies in the fact that the
entrance of one’s prior knowledge (or beliefs) can be post-
poned in classical statistics until the constructed confidence
intervals are used as input to a decision. This neatly separates
the reporting of confidence intervals from their interpretation
by individual readers. In Bayesian statistics, prior knowledge
is incorporated from the beginning. This may be viewed as a
virtue when one is looking at the logical consistency of a
statistical paradigm,'? but it continues to be viewed as a de-
fect by scientists who seek to report their results in the most
objective manner.

Both classical and Bayesian statisticians can agree on the
importance of the likelihood function, in particular on its
value as a concise summary of the experimental data.*’ In-
deed, one often publishes a graph of % when it is asymmet-
ric or useful for showing correlations among parameters.
This is a particularly good practice, since it allows a reader to
construct either Bayesian or (approximate) classical inter-
vals, at any desired confidence level.

What are the biggest obstacles to widespread use of Baye-
sian confidence intervals in particle physics? First in my
mind is our nearly universal insistence on frequentist cover-
age of the unknown true value. Bayesian methods with prior
densities for Poisson mean suggested in the statistics litera-
ture can lead to intervals which severely undercover, and
hence are unacceptable in the consensus of particle physi-
cists, though occasionally studied.'®!! However, a Bayesian
method which yields intervals with the requisite frequentist
coverage encounters much less resistance and, as discussed
in Sec. IV, can even earn the supposed accolade “conserva-
tive.”

The other big obstacle, related to the first, is the need to
specify the prior density. Once one realizes that the naive
objective choice of uniform prior is in fact an arbitrary
choice (since one has to choose the metric in which the prior
is uniform), the situation is very difficult. As illustrated in the
case of Poisson statistics, particle physicists favor prior den-
sities which lead to good frequentist coverage (or better yet,
the same upper limits as the classical method), even when
they are not the prior densities which make the most sense to
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a pure Bayesian. For this reason, I am not sure that continu-
ing developments*! in the research statistics literature will be
of much influence in particle physics.

As the examples have shown, both classical and Bayesian
methods can lead to results which would be unacceptable to
most particle physicists. Thus, there is an uneasy equilib-
rium, in which typically classical intervals are used, unless
they give unacceptable results. In that case, one typically
turns to a Bayesian result, as long as it provides frequentist
coverage or overcoverage! This approach can be charitably
described as pragmatic,* and is enhanced if a graph of the
likelihood function is provided whenever its shape cannot be
easily inferred.

The pragmatic approach works well enough so that most
of the time, we do not concern ourselves with the philosophi-
cal issues of statistical inference. However, all physicists
should at least be aware that computation of confidence in-
tervals can lead to some real mind-benders. Niels Bohr sup-
posedly said* that if quantum mechanics did not make you
dizzy then you did not really understand it. I think that the
same can be said about statistical inference!
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